yingweiwo

Inositol niacinate

Alias: NSC-49506; NSC 49506; Inositol niacinate
Cat No.:V22574 Purity: ≥98%
Inositol nicotinate has vasodilatory effects and may be used in peripheral arterial disease study.
Inositol niacinate
Inositol niacinate Chemical Structure CAS No.: 6556-11-2
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Inositol nicotinate has vasodilatory effects and may be used in peripheral arterial disease study.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Gastrointestinal absorption of inositol hexanicotinate varies widely, with an average of 70% of an orally ingested dose absorbed from stomach and upper small intestines into the bloodstream as intact form. The maximum serum levels of nicotinic acid is reached approximately 6-10 hours after oral ingestion. At low concentrations, the absorption of nicotinic acid and nicotinamide is mediated by sodium ion-dependent facilitated diffusion. At higher concentrations, passive diffusion predominates with doses of 3 to 4 g of niacin being almost completely absorbed.
Unabsorbed inositol nicotinate is detected in feces.
Mean Vd following intravenous administration of 50mg/kg of inositol nicotinate in rats is 1051±250 mL/kg.
Mean clearance rate following intravenous administration of 50mg/kg of inositol nicotinate in rats is 65.4±19 mL/min/kg.
Metabolism / Metabolites
Inositol nicotinate undergoes hydrolysis by plasma esterases, releasing free nicotinic acid and inositol in a sustained manner. The process takes more than 48hours, where the bloodstream enzymatic hydrolysis of inositol hexanicotinate was found to be slower in the first ester linkage of inositol hexanicotinate than in subsequent linkages. Sequential hydrolytic steps of inositol nicotinate forms one nicotinic acid molecule in each step, producing eventually six molecules of nicotinic acid and one inositol moiety.
Biological Half-Life
Mean elimination half life in healthy human adults is approximately one hour.
References

[1]. A systematic review and economic evaluation of cilostazol, naftidrofuryl oxalate, pentoxifylline and inositol nicotinate for the treatment of intermittent claudication in people with peripheral arterial disease. NIHR Health Technology Assessment programme: Executive Summaries.

Additional Infomation
Inositol hexanicotinate is an inositol nicotinate. It is functionally related to a nicotinic acid.
Inositol nicotinate, also known as Inositol hexaniacinate/hexanicotinate or "no-flush niacin", is a niacin ester and vasodilator. It is used in food supplements as a source of niacin (vitamin B3), where hydrolysis of 1 g (1.23 mmol) inositol hexanicotinate yields 0.91 g nicotinic acid and 0.22 g inositol. Niacin exists in different forms including nicotinic acid, nicotinamide and other derivatives such as inositol nicotinate. It is associated with reduced flushing compared to other vasodilators by being broken down into the metabolites and inositol at a slower rate. Nicotinic acid plays an essential role in many important metabolic processes and has been used as lipid-lowering agent. Inositol nicotinate is prescribed in Europe under the name Hexopal as a symptomatic treatment for severe intermittent claudication and Raynaud’s phenomenon.
Inositol Niacinate is a niacin formulation that contains no free niacin, but can be hydrolyzed to release free niacin in vivo. Use of inositol niacinate is associated with less flushing than that seen with the use of free niacin.
Drug Indication
Indicated as a dietary supplement for the source of niacin. Has been investigated for potential beneficial effects on serum lipids. In Europe, inositol hexanicotinate is indicated as a patented drug known as Hexopal, which is therapeutically indicated for the symptomatic relief of severe intermittent claudication and Raynaud’s phenomenon.
Mechanism of Action
Inositol nicotinate and other niacins directly and noncompetitively inhibit microsomal enzyme diacylglycerol acyltransferase 2 (DGAT2) responsible for esterification of fatty acids to form triglycerides, resulting in decreased triglyceride synthesis and hepatic atherogenic lipoprotein secretion. Inhibitied triglyceride synthesis results in accelerated intracellular hepatic apo B degradation and the decreased secretion of VLDL and LDL particles. Niacin also inhibits hepatic expression of beta-chain adenosine triphosphate synthase which inhibits the removal or uptake of HDL–apo A-I. It is also suggested that niacin increases vascular endothelial cell redox state, resulting in the inhibition of oxidative stress and vascular inflammatory genes or key cytokines involved in atherosclerosis. It acts as a ligand on G-protein coupled receptor 109A (HCAR2/HM74A) and 109B (HCAR3/HM74) which mediates the anti-lipolytic and lipid-lowering effects of nicotinic acid. Niacin-mediated signalling of GPR109A expressed on adipocytes and G(i)-mediated decrease in cAMP levels result in decreased lipolysis, fatty acid mobilization, and triglyceride synthesis. The action of inositol nicotinate on GPR109A expressed on skin and macrophages to cause increased prostaglandin D2/E2 activity is thought to be less significant compared to other niacin molecules as it involves sustained release that leads to less flushing.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C42H30N6O12
Molecular Weight
810.73
Exact Mass
810.192
CAS #
6556-11-2
PubChem CID
3720
Appearance
White to off-white solid powder
Density
1.5±0.1 g/cm3
Boiling Point
897.0±65.0 °C at 760 mmHg
Melting Point
254-256ºC
Flash Point
496.3±34.3 °C
Vapour Pressure
0.0±0.3 mmHg at 25°C
Index of Refraction
1.675
LogP
6.37
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
18
Rotatable Bond Count
18
Heavy Atom Count
60
Complexity
1210
Defined Atom Stereocenter Count
0
InChi Key
MFZCIDXOLLEMOO-UHFFFAOYSA-N
InChi Code
InChI=1S/C42H30N6O12/c49-37(25-7-1-13-43-19-25)55-31-32(56-38(50)26-8-2-14-44-20-26)34(58-40(52)28-10-4-16-46-22-28)36(60-42(54)30-12-6-18-48-24-30)35(59-41(53)29-11-5-17-47-23-29)33(31)57-39(51)27-9-3-15-45-21-27/h1-24,31-36H
Chemical Name
[2,3,4,5,6-pentakis(pyridine-3-carbonyloxy)cyclohexyl] pyridine-3-carboxylate
Synonyms
NSC-49506; NSC 49506; Inositol niacinate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO :< 1 mg/mL
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.2335 mL 6.1673 mL 12.3346 mL
5 mM 0.2467 mL 1.2335 mL 2.4669 mL
10 mM 0.1233 mL 0.6167 mL 1.2335 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us