yingweiwo

ZD 7114 hydrochloride

Alias: ICI-D7114; ICI-D 7114; ICI-D-7114; ZD7114; ZD 7114 hydrochloride; 129689-28-7; D-7114 hydrochloride; ZD-7114 hydrochloride; ZD-7114 (hydrochloride); (S)-4-[2-HYDROXY-3-PHENOXYPROPYLAMINOETHOXY]-N-(2-METHOXYETHYL)PHENOXYACETAMIDE HYDROCHLORIDE; Z63T1D9750; (S)-2-(4-(2-((2-Hydroxy-3-phenoxypropyl)amino)ethoxy)phenoxy)-N-(2-methoxyethyl)acetamide hydrochloride; ZD 7114; ZD7114 HCl; ZD-7114; ZD 7114 hydrochloride
Cat No.:V4461 Purity: ≥98%
ZD 7114 hydrochloride (also known as ZD7114) is a novel, potent and selective beta-adrenoceptor agonist of brown fat and thermogenesis.
ZD 7114 hydrochloride
ZD 7114 hydrochloride Chemical Structure CAS No.: 129689-28-7
Product category: Others 6
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of ZD 7114 hydrochloride:

  • ZD-7114
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

ZD 7114 hydrochloride (also known as ZD7114) is a novel, potent and selective beta-adrenoceptor agonist of brown fat and thermogenesis. It has the promise in the treatment of obesity. ICI D7114 stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses.

Biological Activity I Assay Protocols (From Reference)
Targets
β3-adrenergic receptors
ln Vitro
Increasing energy expenditure by treatment with thermogenic drugs is not new, but available drugs have suffered from the problem of lack of selectivity. In the last decade two key findings have allowed the development of selective thermogenic drugs that have promise in the treatment of obesity. 1) The recognition that brown adipose tissue (BAT) plays a role in compensatory increases in energy expenditure has allowed an approach directed at a target organ. 2) The demonstration showing that increases in the activity of BAT may be modulated by an atypical (beta 3) adrenoceptor has led to the development of a new peripherally acting beta-adrenoceptor agonist ICI D7114, which stimulates thermogenesis at doses that have little effect on beta 1 or beta 2 adrenoceptors. Treatment with the compound activates BAT and thermogenesis even in species and situations where the intrinsic capacity is low. 3) The compound has beneficial effects in animal models of obesity and disturbed glucose and lipid homeostasis. [1]
ln Vivo
ICI D7114 is a potent and selective stimulant of whole body oxygen consumption with little effect on heart rate in the rat. In addition, administration of ICI D7114 did not produce #2-adrenoceptor-mediated effects such as tremor or hypokalaemia. The results suggest that ICI D7114 may be useful in the treatment of obesity and related diseases such as diabetes.[2]
Animal Protocol
rats treated with ICI D7114 or clenbuterol were dosed by gavage with the compounds dissolved in aqueous 0.025% polysorbate. [2]
In the first series, four dogs received gelatin capsules containing 0.1, 1.0 or 10.Omgkg-' of ICI D7114 or a placebo capsule containing lactose. Each dog received each treatment with a washout period of at least one week between treatments. In the second series the effects of 0.01, 0.03 and 0.1 mgkg-t ICI D7114 were compared with placebo. The effects of treatment with placebo capsules or capsules containing 0.1 or 10.0mgkg-' of ICI D7114 were also assessed in five cats in the same way as described for dogs.[2]
Dogs with indwelling venous and arterial catheters were dosed with capsules containing ICI D7114 or a placebo preparation of lactose. Blood samples were taken via the catheters at intervals after dosing for the determination of blood potassium with a Nova Stat Profile blood gas analyser.[2]
References

[1]:ICI D7114: a novel selective adrenoceptor agonist of brown fat and thermogenesis. Am J Clin Nutr. 1992 Jan;55(1 Suppl):262S-264S.

[2]:ICI D7114 a novel selective beta-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption. Br J Pharmacol. 1991 Sep;104(1):97-104.

Additional Infomation
1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. [2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H30N2O6.HCL
Molecular Weight
454.94434
Exact Mass
454.187
Elemental Analysis
C, 58.08; H, 6.87; Cl, 7.79; N, 6.16; O, 21.10
CAS #
129689-28-7
Related CAS #
129689-30-1;129689-28-7 (HCl);
PubChem CID
9890216
Appearance
Typically exists as solid at room temperature
LogP
3.269
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
15
Heavy Atom Count
31
Complexity
439
Defined Atom Stereocenter Count
1
SMILES
COCCNC(=O)COC1=CC=C(C=C1)OCCNCC(COC2=CC=CC=C2)O.Cl
InChi Key
KCAMZVQSGDBGGF-FERBBOLQSA-N
InChi Code
InChI=1S/C22H30N2O6.ClH/c1-27-13-12-24-22(26)17-30-21-9-7-20(8-10-21)28-14-11-23-15-18(25)16-29-19-5-3-2-4-6-19;/h2-10,18,23,25H,11-17H2,1H3,(H,24,26);1H/t18-;/m0./s1
Chemical Name
2-[4-[2-[[(2S)-2-hydroxy-3-phenoxypropyl]amino]ethoxy]phenoxy]-N-(2-methoxyethyl)acetamide;hydrochloride
Synonyms
ICI-D7114; ICI-D 7114; ICI-D-7114; ZD7114; ZD 7114 hydrochloride; 129689-28-7; D-7114 hydrochloride; ZD-7114 hydrochloride; ZD-7114 (hydrochloride); (S)-4-[2-HYDROXY-3-PHENOXYPROPYLAMINOETHOXY]-N-(2-METHOXYETHYL)PHENOXYACETAMIDE HYDROCHLORIDE; Z63T1D9750; (S)-2-(4-(2-((2-Hydroxy-3-phenoxypropyl)amino)ethoxy)phenoxy)-N-(2-methoxyethyl)acetamide hydrochloride; ZD 7114; ZD7114 HCl; ZD-7114; ZD 7114 hydrochloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1981 mL 10.9905 mL 21.9809 mL
5 mM 0.4396 mL 2.1981 mL 4.3962 mL
10 mM 0.2198 mL 1.0990 mL 2.1981 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us