Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
Other Sizes |
|
ln Vitro |
When comparing the GLP-2-treated group to the vehicle-treated control group, mucosal IGFBP-4 mRNA levels rose by 518±22% (P<0.05). FRIC cultures were utilized as an in vitro model of the entire intestine since mucosal expression of IGFBP-4 transcripts was discovered to be extremely low in comparison to expression in the entire intestine. Prior research revealed that FRIC cells contain a functional GLP-2 receptor (GLP-2R) that responds to GLP-2 treatment with increased IGF-1 mRNA expression and IGF-1 secretion as well as a cAMP response. In FRIC cultures, GLP-2 (10−8 M) treatment resulted in a 2-hour increase in IGFBP-4 mRNA expression as compared to vehicle-treated cells (P<0.05). 1].
|
---|---|
ln Vivo |
L-NAME prevents GLP-2 from quickly increasing the mass of apoB48 in the plasma TRL fraction, which represents the number of chylomicrons. Postprandial TRL-lipid is elevated when treated with GLP-2 alone (slope 3.65±0.73×10−3 g/L/min vs. 1.63±0.28×10−3 g/L/min, GLP-2 vs. control). L-NAME pretreatment can totally mitigate this effect (slope 3.67±0.15×10−4 g/L/min). Within 30 minutes, GLP-2 caused an increase in TRL-apoB48, which happened before an increase in TRL-TG. Acute increases in plasma tritium levels are observed with GLP-2 (slope 1.66±0.25×102 dpm/mL/min compared to 1.11±0.17×102 dpm/mL/min with control) [2].
|
References |
[1]. Kaori Austin, et al. IGF Binding Protein-4 is Required for the Growth Effects of Glucagon-Like Peptide-2 in Murine Intestine. Endocrinology. 2015 Feb; 156(2): 429-436.
[2]. Hsieh J, et al. Glucagon-Like Peptide 2 (GLP-2) Stimulates Postprandial Chylomicron Production and Postabsorptive Release of Intestinal Triglyceride Storage Pools via Induction of Nitric Oxide Signaling in Male Hamsters and Mice. Endocrinology. 2015 Oct;1 |
Additional Infomation |
A 33-amino acid peptide derived from the C-terminal of PROGLUCAGON and mainly produced by the INTESTINAL L CELLS. It stimulates intestinal mucosal growth and decreased apoptosis of ENTEROCYTES. GLP-2 enhances gastrointestinal function and plays an important role in nutrient homeostasis.
See also: Glucagon-like peptide ii (preferred). |
Molecular Formula |
C165H254N44O55S
|
---|---|
Molecular Weight |
3766.10909795761
|
Exact Mass |
3764.818
|
CAS # |
223460-79-5
|
PubChem CID |
90488755
|
Appearance |
White to off-white solid powder
|
LogP |
-14.8
|
Hydrogen Bond Donor Count |
55
|
Hydrogen Bond Acceptor Count |
60
|
Rotatable Bond Count |
126
|
Heavy Atom Count |
265
|
Complexity |
9070
|
Defined Atom Stereocenter Count |
39
|
SMILES |
CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CC3=CC=CC=C3)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC4=CC=CC=C4)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(=O)O)NC(=O)[C@H](C)NC(=O)[C@H](CC5=CNC=N5)N
|
InChi Key |
TWSALRJGPBVBQU-PKQQPRCHSA-N
|
InChi Code |
InChI=1S/C165H254N44O55S/c1-22-77(11)126(157(256)187-96(45-47-115(168)215)142(241)207-130(84(18)212)161(260)186-94(43-34-35-50-166)141(240)203-129(80(14)25-4)160(259)209-131(85(19)213)162(261)201-112(164(263)264)67-125(230)231)204-152(251)101(55-76(9)10)190-146(245)104(58-89-68-176-93-42-33-32-41-91(89)93)193-148(247)106(61-117(170)217)200-158(257)127(78(12)23-2)205-153(252)103(57-88-39-30-27-31-40-88)191-150(249)110(65-123(226)227)196-138(237)95(44-36-51-175-165(172)173)183-134(233)82(16)179-133(232)81(15)181-143(242)99(53-74(5)6)189-147(246)105(60-116(169)216)195-151(250)111(66-124(228)229)197-144(243)100(54-75(7)8)199-159(258)128(79(13)24-3)206-163(262)132(86(20)214)208-154(253)107(62-118(171)218)194-140(239)98(49-52-265-21)185-139(238)97(46-48-120(220)221)184-149(248)109(64-122(224)225)198-156(255)114(72-211)202-145(244)102(56-87-37-28-26-29-38-87)192-155(254)113(71-210)182-119(219)70-177-137(236)108(63-121(222)223)188-135(234)83(17)180-136(235)92(167)59-90-69-174-73-178-90/h26-33,37-42,68-69,73-86,92,94-114,126-132,176,210-214H,22-25,34-36,43-67,70-72,166-167H2,1-21H3,(H2,168,215)(H2,169,216)(H2,170,217)(H2,171,218)(H,174,178)(H,177,236)(H,179,232)(H,180,235)(H,181,242)(H,182,219)(H,183,233)(H,184,248)(H,185,238)(H,186,260)(H,187,256)(H,188,234)(H,189,246)(H,190,245)(H,191,249)(H,192,254)(H,193,247)(H,194,239)(H,195,250)(H,196,237)(H,197,243)(H,198,255)(H,199,258)(H,200,257)(H,201,261)(H,202,244)(H,203,240)(H,204,251)(H,205,252)(H,206,262)(H,207,241)(H,208,253)(H,209,259)(H,220,221)(H,222,223)(H,224,225)(H,226,227)(H,228,229)(H,230,231)(H,263,264)(H4,172,173,175)/t77-,78-,79-,80-,81-,82-,83-,84+,85+,86+,92-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,112-,113-,114-,126-,127-,128-,129-,130-,131-,132-/m0/s1
|
Chemical Name |
(2S)-2-[[(2S,3R)-2-[[(2S,3S)-2-[[(2S)-6-amino-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S,3R)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-(1H-imidazol-4-yl)propanoyl]amino]propanoyl]amino]-3-carboxypropanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-3-phenylpropanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-4-carboxybutanoyl]amino]-4-methylsulfanylbutanoyl]amino]-4-oxobutanoyl]amino]-3-hydroxybutanoyl]amino]-3-methylpentanoyl]amino]-4-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-4-oxobutanoyl]amino]-4-methylpentanoyl]amino]propanoyl]amino]propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-carboxypropanoyl]amino]-3-phenylpropanoyl]amino]-3-methylpentanoyl]amino]-4-oxobutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-methylpentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]hexanoyl]amino]-3-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]butanedioic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~25 mg/mL (~6.64 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.2655 mL | 1.3276 mL | 2.6553 mL | |
5 mM | 0.0531 mL | 0.2655 mL | 0.5311 mL | |
10 mM | 0.0266 mL | 0.1328 mL | 0.2655 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.