yingweiwo

Fumonisin B3

Alias: Fumonisin B3; 1422359-85-0; (2R)-2-[2-[(5R,6R,7S,9S,11R,18S,19S)-19-amino-6-[(3R)-3,4-dicarboxybutanoyl]oxy-11,18-dihydroxy-5,9-dimethylicosan-7-yl]oxy-2-oxoethyl]butanedioic acid; 1,2,3-Propanetricarboxylic acid, 1,1'-[(1S,2R)-1-[(2S,4R,11S,12S)-12-amino-4,11-dihydroxy-2-methyltridecyl]-2-[(1R)-1-methylpentyl]-1,2-ethanediyl] ester, (2R,2'R)-; Fumonisin B3 (>90%); DTXSID20891856; 1,2,3-Propanetricarboxylic acid, 1,1'-[(1S,2R)-1-[(2S,4R,11S,12S)-12-amino-4,11-dihydroxy-2-methyltridecyl]-2-[(1R)-1-methylpentyl]-1,2-ethanediyl] ester, (2R,2'R)-; FB3; Fumonisin B3; Fumonisin B3 50 microg/mL in Acetonitrile/Water;
Cat No.:V32914 Purity: ≥98%
Fumonisin B3 is a mycotoxin generated by Fusarium and is a form of fumonisin.
Fumonisin B3
Fumonisin B3 Chemical Structure CAS No.: 1422359-85-0
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
Other Sizes

Other Forms of Fumonisin B3:

  • Fumonisin B3-13C34 (fumonisin-13C34)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Fumonisin B3 is a mycotoxin generated by Fusarium and is a form of fumonisin.
Biological Activity I Assay Protocols (From Reference)
Targets
Sphingosine N-acyltransferase/ceramide synthase
ln Vitro
The fumonisin B mycotoxins (FB1 and FB2) have been purified and characterized from corn cultures of Fusarium moniliforme strain MRC 826. Fumonisin B1 (FB1), the major fumonisin produced in culture, has been shown to be responsible for the major toxicological effects of the fungus in rats, horses and pigs. Recent investigations on the purification of compounds with chromatographic characteristics similar to FB1 have led to the identification of two new fumonisins, FB3 and FB4. Fumonisins A1 and A2, the N-acetyl derivatives of FB1 and FB2 respectively, were also purified and shown to be secondary metabolites of the fungus. Short-term carcinogenesis studies in a rat liver bioassay indicated that over a period of 15 to 20 days, at dietary levels of 0.05-0.1%, FB2 and FB3 closely mimic the toxicological and cancer initiating activity of FB1 and thus could contribute to the toxicological effects of the fungus in animals. In contrast, no biological activity could be detected for FA1 under identical experimental conditions. These studies and others have indicated that the fumonisin B mycotoxins, although lacking mutagenicity in the Salmonella test or genotoxicity in the DNA repair assays in primary hepatocytes, appear to induce resistant hepatocytes similar to many known hepatocarcinogens [1].
ln Vivo
A liquid chromatographic (LC) method for simultaneous determination of fumonisins B1 (FB1), B2 (FB2), and B3 (FB3) in corn was subjected to a collaborative study involving 12 participants from 10 countries, in which the accuracy and reproducibility characteristics of the method were established. Mean analyte recoveries from corn ranged from 81.1 to 84.2% for FB1 (at a spiking range of 500 to 8000 ng/g), from 75.9 to 81.9% for FB2 (at a spiking range of 200 to 3200 ng/g), and from 75.8 to 86.8% for FB3 (at a spiking range of 100 to 1600 ng/g). The valid data were statistically evaluated after exclusion of outliers. Relative standard deviations for within-laboratory repeatability ranged from 5.8 to 13.2% for FB1, from 7.2 to 17.5% for FB2, and from 8.0 to 17.2% for FB3. Relative standard deviations for between-laboratory reproducibility varied from 13.9 to 22.2% for FB1, from 15.8 to 26.7% for FB2, and from 19.5 to 24.9% for FB3. HORRAT ratios, calculated for the individual toxin analogues, ranged from 0.75 to 1.73. The LC method for determination of fumonisins B1, B2, and B3 in corn (at concentrations of 800-12800 ng total fumonisins/g) has been adopted by AOAC INTERNATIONAL [2].
Toxicity/Toxicokinetics
The Committee reviewed the studies that have become available since the previous evaluation in 2011, and concluded that they would not change the overall toxicological assessment performed previously by the Committee. Thus, the previously established group PMTDI of 2 µg/kg bw for FB1, FB2 and FB3, alone or in combination, was retained by the current Committee. The Committee noted that the international exposure estimates for FB1 and total fumonisins were lower than those estimated by the Committee at its seventy-fourth meeting in 2011. In the current assessment, a larger part of the occurrence data was from countries belonging to the WHO European Region compared with 2011, resulting in lower overall fumonisin levels in maize. In the current assessment, no information on fumonisin levels in maize was available from countries belonging to the African, Eastern Mediterranean or South-East Asia regions, where higher fumonisin concentrations are typically detected. Given these limitations of the occurrence data used in the exposure assessment and high exposures reported in the literature in some countries, it is likely that the exposures to fumonisins in areas where maize is a staple food and high contamination with fumonisins can occur are higher than those estimated by the Committee at this meeting, as can be seen in the previous evaluation, which was based on a larger and more representative data set. At the eighty-third meeting the Committee also evaluated co-exposure to aflatoxins and fumonisins. Fumonisins and aflatoxins are both frequent contaminants in cereals and cerealbased foods. Aflatoxins are common contaminants in groundnuts and tree nuts. Co-exposure to both mycotoxins is likely in areas where these foods are regularly consumed. Although evidence in laboratory animals from the previous and the present evaluations has suggested an additive or synergistic effect of fumonisin and aflatoxin co-exposure in the development of preneoplastic lesions or hepatocellular carcinoma, currently no data are available on such effects in humans. The Committee concluded that there are few data available to support co-exposure as a contributing factor in human disease. However, the interaction between AFB1, a compound with known genotoxic properties, and fumonisins, which have the potential to induce regenerative cell proliferation (particularly at exposures above the PMTDI), remains a concern. This is due to the fact that the incidences of chronic liver disease and stunting are high in the areas of the world where the exposures to both mycotoxins are high and the co-exposure has been confirmed with biomarkers.
References

[1]. Fumonisins: isolation, chemical characterization and biological effects. Mycopathologia. 1992 Feb;117(1-2):11-6.

[2]. Liquid chromatographic determination of fumonisins B1, B2, and B3 in corn: AOAC-IUPAC Collaborative Study. J AOAC Int. 1996 May-Jun;79(3):688-96.

Additional Infomation
(2R)-2-[2-[(5R,6R,7S,9S,11R,18S,19S)-19-amino-6-[(3R)-3,4-dicarboxybutanoyl]oxy-11,18-dihydroxy-5,9-dimethylicosan-7-yl]oxy-2-oxoethyl]butanedioic acid has been reported in Fusarium fujikuroi and Fusarium verticillioides with data available.
See also: Fumonisin B3 (annotation moved to).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C34H59NO14
Molecular Weight
705.830572366714
Exact Mass
705.393
Elemental Analysis
C, 57.86; H, 8.43; N, 1.98; O, 31.73
CAS #
1422359-85-0
Related CAS #
Fumonisin B3-13C34;2819816-90-3
PubChem CID
42608358
Appearance
Typically exists as solid at room temperature
LogP
0.8
Hydrogen Bond Donor Count
7
Hydrogen Bond Acceptor Count
15
Rotatable Bond Count
31
Heavy Atom Count
49
Complexity
1040
Defined Atom Stereocenter Count
9
SMILES
CCCC[C@@H](C)[C@H]([C@H](C[C@@H](C)C[C@@H](CCCCCC[C@@H]([C@H](C)N)O)O)OC(=O)C[C@@H](CC(=O)O)C(=O)O)OC(=O)C[C@@H](CC(=O)O)C(=O)O
InChi Key
CPCRJSQNWHCGOP-STOIETHLSA-N
InChi Code
InChI=1S/C34H59NO14/c1-5-6-11-21(3)32(49-31(43)19-24(34(46)47)17-29(40)41)27(48-30(42)18-23(33(44)45)16-28(38)39)15-20(2)14-25(36)12-9-7-8-10-13-26(37)22(4)35/h20-27,32,36-37H,5-19,35H2,1-4H3,(H,38,39)(H,40,41)(H,44,45)(H,46,47)/t20-,21+,22-,23+,24+,25+,26-,27-,32+/m0/s1
Chemical Name
(2R)-2-[2-[(5R,6R,7S,9S,11R,18S,19S)-19-amino-6-[(3R)-3,4-dicarboxybutanoyl]oxy-11,18-dihydroxy-5,9-dimethylicosan-7-yl]oxy-2-oxoethyl]butanedioic acid
Synonyms
Fumonisin B3; 1422359-85-0; (2R)-2-[2-[(5R,6R,7S,9S,11R,18S,19S)-19-amino-6-[(3R)-3,4-dicarboxybutanoyl]oxy-11,18-dihydroxy-5,9-dimethylicosan-7-yl]oxy-2-oxoethyl]butanedioic acid; 1,2,3-Propanetricarboxylic acid, 1,1'-[(1S,2R)-1-[(2S,4R,11S,12S)-12-amino-4,11-dihydroxy-2-methyltridecyl]-2-[(1R)-1-methylpentyl]-1,2-ethanediyl] ester, (2R,2'R)-; Fumonisin B3 (>90%); DTXSID20891856; 1,2,3-Propanetricarboxylic acid, 1,1'-[(1S,2R)-1-[(2S,4R,11S,12S)-12-amino-4,11-dihydroxy-2-methyltridecyl]-2-[(1R)-1-methylpentyl]-1,2-ethanediyl] ester, (2R,2'R)-; FB3; Fumonisin B3; Fumonisin B3 50 microg/mL in Acetonitrile/Water;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4168 mL 7.0839 mL 14.1677 mL
5 mM 0.2834 mL 1.4168 mL 2.8335 mL
10 mM 0.1417 mL 0.7084 mL 1.4168 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us