yingweiwo

Flurandrenolide (Fludroxycortide; Flurandrenolone)

Cat No.:V21153 Purity: ≥98%
Flurandrenolide (Fludroxycortide; Flurandrenolone) is a synthetic and topically administered glucocorticoid with anti-inflammatory and anti-allergic properties, used for treatment of skin irritations.
Flurandrenolide (Fludroxycortide; Flurandrenolone)
Flurandrenolide (Fludroxycortide; Flurandrenolone) Chemical Structure CAS No.: 1524-88-5
Product category: New12
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of Flurandrenolide (Fludroxycortide; Flurandrenolone):

  • Flurandrenolone Acetate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Flurandrenolide (Fludroxycortide; Flurandrenolone) is a synthetic and topically administered glucocorticoid with anti-inflammatory and anti-allergic properties, used for treatment of skin irritations. Flurandrenolide exerts its effects by interacting with specific cytoplasmic glucocorticoid receptors and subsequently activates glucocorticoid receptor mediated gene expression. The synthesis of certain anti-inflammatory proteins is induced while the synthesis of certain inflammatory mediators is inhibited. As a result, there is an overall reduction in chronic inflammation and autoimmune reactions.

Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Once absorbed through the skin, topical corticosteroids are handled through pharmacokinetic pathways similar to those of systemically administered corticosteroids
Topical corticosteroids can be absorbed from normal intact skin. They are metabolized primarily in the liver and then excreted in the kidneys. Some of the topical corticosteroids and their metabolites are also excreted into the bile.
Topical corticosteroids can be absorbed from normal intact skin. Inflammation and/or other disease processes in the skin increase percutaneous absorption. ... Once absorbed through the skin, topical corticosteroids are handled through pharmacokinetic pathways similar to systemically administered corticosteroids. Corticosteroids are bound to plasma proteins in varying degrees. They are metabolized primarily in the liver and then excreted in the kidneys. Some of the topical corticosteroids and their metabolites are also excreted into the bile. /Topical corticosteroids/
Metabolism / Metabolites
Primarily hepatic
/Topical corticosteroids/ are metabolized primarily in the liver and then excreted in the kidneys. Some of the topical corticosteroids and their metabolites are also excreted into the bile. /Topical corticosteroids/
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Flurandrenolide has not been studied during breastfeeding. Since only extensive application of the most potent corticosteroids may cause systemic effects in the mother, it is unlikely that short-term application of topical corticosteroids would pose a risk to the breastfed infant by passage into breastmilk. However, it would be prudent to use the least potent drug on the smallest area of skin possible. It is particularly important to ensure that the infant's skin does not come into direct contact with the areas of skin that have been treated. Only the lower potency corticosteroids should be used on the nipple or areola where the infant could directly ingest the drugs from the skin. Only water-miscible cream or gel products should be applied to the breast because ointments may expose the infant to high levels of mineral paraffins via licking. Any topical corticosteroid should be wiped off thoroughly prior to nursing if it is being applied to the breast or nipple area.
◉ Effects in Breastfed Infants
Topical application of a corticosteroid with relatively high mineralocorticoid activity (isofluprednone acetate) to the mother's nipples resulted in prolonged QT interval, cushingoid appearance, severe hypertension, decreased growth and electrolyte abnormalities in her 2-month-old breastfed infant. The mother had used the cream since birth for painful nipples.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Corticosteroids are bound to plasma proteins in varying degrees.
Interactions
The effect of glucocorticoids on oral anticoagulant therapy is variable, and the efficacy of oral anticoagulants has been reported to be enhanced or diminished with concomitant glucocorticoid administration. Patients receiving glucocorticoids and oral anticoagulants concomitantly should be monitored (e.g., using coagulation indices) in order to maintain desired anticoagulant effect. /Corticosteroids/
Because corticosteroids inhibit antibody response, the drugs may cause a diminished response to toxoids and live or inactivated vaccines. In addition, corticosteroids may potentiate replication of some organisms contained in live, attenuated vaccines and supraphysiologic dosages of the drugs can aggravate neurologic reactions to some vaccines. Routine administration of vaccines or toxoids should generally be deferred until corticosteroid therapy is discontinued. Administration of live virus or live, attenuated vaccines, including smallpox vaccine, is contraindicated in patients receiving immunosuppressive dosages of glucocorticoids. In addition, if inactivated vaccines are administered to such patients, expected serum antibody response may not be obtained. The Public Health Service Advisory Committee on Immunization Practices (ACIP) and American Academy of Family Physicians (AAFP) state that administration of live virus vaccines usually is not contraindicated in patients receiving corticosteroid therapy as short-term (less than 2 weeks) treatment, in low to moderate dosages, as long-term alternate-day treatment with short-acting preparations, in maintenance physiologic dosages (replacement therapy), or if corticosteroids are administered topically, ophthalmically, intra-articularly, bursally, or into a tendon. If immunization is necessary in a patient receiving corticosteroid therapy, serologic testing may be needed to ensure adequate antibody response and additional doses of the vaccine or toxoid may be necessary. Immunization procedures may be undertaken in patients receiving nonimmunosuppressive doses of glucocorticoids or in patients receiving glucocorticoids as replacement therapy (e.g., Addison's disease). /Corticosteroids/
Potassium-depleting diuretics (e.g., thiazides, furosemide, ethacrynic acid) and other drugs that deplete potassium, such as amphotericin B, may enhance the potassium-wasting effect of glucocorticoids. Serum potassium should be closely monitored in patients receiving glucocorticoids and potassium-depleting drugs. /Corticosteroids/
Concomitant administration of ulcerogenic drugs such as indomethacin during corticosteroid therapy may increase the risk of GI ulceration. Aspirin should be used cautiously in conjunction with glucocorticoids in patients with hypoprothrombinemia. Although concomitant therapy with salicylates and corticosteroids does not appear to increase the incidence or severity of GI ulceration, the possibility of this effect should be considered. /Corticosteroids/
References
: Setaluri V, Clark AR, Feldman SR. Transmittance properties of flurandrenolide tape for psoriasis: helpful adjunct to phototherapy. J Cutan Med Surg. 2000 Oct;4(4):196-8. PubMed PMID: 11231197.
Additional Infomation
Therapeutic Uses
Glucocorticoids, Synthetic; Glucocorticoids, Topical
Topical corticosteroids of low to medium potency are indicated in the treatment of corticosteroid-responsive dermatologic disorders /mild to moderate atopic dermatitis; contact dermatitis; mild nummular dermatitis; seborrheic dermatitis (facial and intertriginous areas); other mild to moderate forms of dermatitis; other mild to moderate inflammatory dermatoses; intertrigo; lichen planus (facial and intertriginous areas); discoid lupus erythematosus (facial and intertriginous areas); polymorphous light eruption; anogenital pruritus; pruritus senilis; psoriasis (facial and intertriginous areas); xerosis (inflammatory phase/. Occlusive dressings also may be required for chronic or severe cases of lichen simplex chronicus, psoriasis, eczema, atopic dermatitis, or chronic hand eczema. The more potent topical corticosteroids and/or occlusive dressings may be required for conditions such as discoid lupus erythematosus, lichen planus, granuloma annulare, psoriatic plaques, and psoriasis affecting the palms, soles, elbows, or knees. /Corticosteroids (topical); Included in US product labeling/
Flurandrenolide shares the actions of the other topical corticosteroids and is used for the relief of the inflammatory manifestations of corticosteroid-responsive dermatoses.
MEDICATION (VET): Glucocorticoids have profound effects on nearly all cell types and organ systems, particularly immunologic and inflammatory activity. They may be used in either an anti-inflammatory or immunosuppressive capacity, depending on the dosage selected. Glucocorticoids are used for hypersensitivity dermatoses, contact dermatitis, immune-mediated diseases (eg, pemphigus, pemphigoid, lupus erythematosus), and neoplasia (eg, mast cell tumor, lymphoma). ... They may be administered PO, IV, IM, or SC. /Glucocorticoids/
Drug Warnings
VET: AVOID COVERING OVER 5-10% OF BODY SURFACE, ESP IN PREGNANT ANIMALS.
The following may occur more frequently with occlusive dressings: Maceration of the skin, Secondary infection, Skin atrophy, Striae Miliaria. /Topical corticosteroids/
The following local adverse reactions are reported infrequently with topical corticosteroids but may occur more frequently with the use of occlusive dressings. These reactions are listed in an approximate decreasing order of occurrence: Burning, Itching, Irritation, Dryness, Folliculitis, Hypertrichosis, Acneform eruptions, Hypopigmentation, Perioral dermatitis, Allergic contact dermatitis. /Topical corticosteroids/
Pediatric patients may demonstrate greater susceptibility to topical corticosteroid-induced HPA axis suppression and Cushing's syndrome than do mature patients because of a larger skin surface area to body weight ratio. Hypothalamic-pituitary-adrenal (HPA) axis suppression, Cushing's syndrome, and intracranial hypertension have been reported in pediatric patients receiving topical corticosteroids. Manifestations of adrenal suppression in pediatric patients include linear growth retardation, delayed weight gain, low plasma cortisol levels, and absence of response to ACTH stimulation. Manifestations of intracranial hypertension include bulging fontanelles, headaches, and bilateral papilledema. Administration of topical corticosteroids to pediatric patients should be limited to the least amount compatible with an effective therapeutic regimen. Chronic corticosteroid therapy may interfere with the growth and development of pediatric patients. /Topical corticosteroids/
For more Drug Warnings (Complete) data for FLURANDRENOLIDE (36 total), please visit the HSDB record page.
Pharmacodynamics
Flurandrenolide is primarily effective because of its anti-inflammatory, antipruritic, and vasoconstrictive actions.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H33FO6
Molecular Weight
436.52
Exact Mass
436.226
CAS #
1524-88-5
Related CAS #
1524-88-5 (free);2802-11-1 (acetate);
PubChem CID
15209
Appearance
Crystals from acetone + hexane
WHITE TO OFF-WHITE, FLUFFY CRYSTALLINE POWDER
Density
1.31g/cm3
Boiling Point
578.7ºC at 760mmHg
Melting Point
209 - 219ºC
Flash Point
303.8ºC
Vapour Pressure
8.35E-16mmHg at 25°C
Index of Refraction
1.572
LogP
2.498
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
2
Heavy Atom Count
31
Complexity
868
Defined Atom Stereocenter Count
9
SMILES
C[C@@]12[C@@]3(C(CO)=O)[C@@](OC(C)(O3)C)([H])C[C@@]1([H])[C@]4([H])C[C@H](F)C5=CC(CC[C@]5(C)[C@@]4([H])[C@@H](O)C2)=O
InChi Key
POPFMWWJOGLOIF-XWCQMRHXSA-N
InChi Code
InChI=1S/C24H33FO6/c1-21(2)30-19-9-14-13-8-16(25)15-7-12(27)5-6-22(15,3)20(13)17(28)10-23(14,4)24(19,31-21)18(29)11-26/h7,13-14,16-17,19-20,26,28H,5-6,8-11H2,1-4H3/t13-,14-,16-,17-,19+,20+,22-,23-,24+/m0/s1
Chemical Name
(1S,2S,4R,8S,9S,11S,12S,13R,19S)-19-fluoro-11-hydroxy-8-(2-hydroxyacetyl)-6,6,9,13-tetramethyl-5,7-dioxapentacyclo[10.8.0.02,9.04,8.013,18]icos-17-en-16-one
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~229.09 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2908 mL 11.4542 mL 22.9085 mL
5 mM 0.4582 mL 2.2908 mL 4.5817 mL
10 mM 0.2291 mL 1.1454 mL 2.2908 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us