yingweiwo

Etomoxir sodium (racemate)

Alias: B-807-54; B 80754; B80754; B-80754
Cat No.:V14781 Purity: ≥98%
Etomoxir sodium (racemate) is a novel and potent inhibitor of carnitine palmitoyltransferase-1 (CPT-1)
Etomoxir sodium (racemate)
Etomoxir sodium (racemate) Chemical Structure CAS No.: 82258-36-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Etomoxir sodium (racemate):

  • S-(+)-Etomoxir
  • Etomoxir Sodium salt
  • R-(+)-Etomoxir Potassium
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Etomoxir sodium (racemate) is a novel and potent inhibitor of carnitine palmitoyltransferase-1 (CPT-1)
Biological Activity I Assay Protocols (From Reference)
Targets
Carnitine palmitoyltransferase I (CPT-I)
ln Vitro
When etomoxir binds irreversibly to CPT-1's catalytic site, it inhibits CPT-1's activity while simultaneously increasing transplantation oxidase. Etomoxir was created as a probe for the outer mitochondrial membrane-localized mitochondrial carnitine scaffold amplification enzyme-1 (CPT-1). Etomoxir stimulates DNA synthesis and myocardial development in the myocardium by acting as an oxisome proliferator. Consequently, etomoxan is regarded as a PPARalpha agonist in addition to a CPT1. Etomoxir has been proposed as a target for activation of cardiac mutations. It is a member of the ethylene oxide kinase carnitine template transferase I family. Carnitine template transferase I activity is irreversibly transcribed upon activation of Etomoxir therapy. Consequently, there is a decrease in base import as mitochondria and beta-oxidation, leading to an increase in cytoplasmic accumulation and oxidation. Etomoxir's long delays (24 hours) have even distinct impacts on the expression of enzymes.
ln Vivo
Etomoxir suppresses the reduction of BMSCs-differentiated osteoblasts and significantly inhibits the decrease of bone mineral density (BMD) and bone breaking strength in mice fed high fat (HF) and db/db diets[3]. In mice fed HF and db/db, etopoxir inhibits the increase in mitochondrial ROS generation in osteoblasts and mice[3]. The in vivo partial inhibition of carnitine palmitoyltransferase-I (CPT-I) caused by etomoxir does not change the rates of cardiac long-chain fatty acid uptake and oxidation[4].
This study evaluated the association between free fatty acid (FFA), ROS generation, mitochondrial dysfunction and bone mineral density (BMD) in type 2 diabetic patients and investigated the molecular mechanism. db/db and high fat (HF)-fed mice were treated by Etomoxir, an inhibitor of CPT1, MitoQ, and PFT-α, an inhibitor of P53. Bone metabolic factors were assessed and BMSCs were isolated and induced to osteogenic differentiation. FFA, lipid peroxidation and mtDNA copy number were correlated with BMD in T2DM patients. Etomoxir, MitoQ and PFT-α significantly inhibited the decrease of BMD and bone breaking strength in db/db and HF-fed mice and suppressed the reduction of BMSCs-differentiated osteoblasts. Etomoxir and MitoQ, but not PFT-α, inhibited the increase of mitochondrial ROS generation in db/db and HF-fed mice and osteoblasts. In addition, Etomoxir, MitoQ and PFT-α significantly inhibited mitochondrial dysfunction in osteoblasts. Moreover, mitochondrial apoptosis was activated in osteoblasts derived from db/db and HF-fed mice, which was inhibited by Etomoxir, MitoQ and PFT-α. Furthermore, mitochondrial accumulation of P53 recruited Bax and initiated molecular events of apoptotic events. These results demonstrated that fatty acid oxidation resulted in ROS generation, activating P53/Bax-mediated mitochondrial apoptosis, leading to reduction of osteogenic differentiation and bone loss in T2DM.[3]
Although CPT-I (carnitine palmitoyltransferase-I) is generally regarded to present a major rate-controlling site in mitochondrial beta-oxidation, it is incompletely understood whether CPT-I is rate-limiting in the overall LCFA (long-chain fatty acid) flux in the heart. Another important site of regulation of the LCFA flux in the heart is trans-sarcolemmal LCFA transport facilitated by CD36 and FABPpm (plasma membrane fatty acid-binding protein). Therefore, we explored to what extent a chronic pharmacological blockade of the LCFA flux at the level of mitochondrial entry of LCFA-CoA would affect sarcolemmal LCFA uptake. Rats were injected daily with saline or etomoxir, a specific CPT-I inhibitor, for 8 days at 20 mg/kg of body mass. Etomoxir-treated rats displayed a 44% reduced cardiac CPT-I activity. Sarcolemmal contents of CD36 and FABPpm, as well as the LCFA transport capacity, were not altered in the hearts of etomoxir-treated versus control rats. Furthermore, rates of LCFA uptake and oxidation, and glucose uptake by cardiac myocytes from etomoxir-treated rats were not different from control rats, neither under basal nor under acutely induced maximal metabolic demands. Finally, hearts from etomoxir-treated rats did not display triacylglycerol accumulation. Therefore CPT-I appears not to present a major rate-controlling site in total cardiac LCFA flux. It is likely that sarcolemmal LCFA entry rather than mitochondrial LCFA-CoA entry is a promising target for normalizing LCFA flux in cardiac metabolic diseases[4].
Enzyme Assay
Immunoblotting[1] CPT1A protein expression was assessed 5 days following shRNA lentiviral infection. Cells were lysed in RIPA-2 (50 mM Tris-HCl, pH8.0, 150 mM NaCl, 1% NP-40, 0.5% deoxycholic acid, 0.1% SDS) containing protease and phosphatase inhibitors. Equal amounts of lysate were separated by SDS-PAGE and transferred electrophoretically to a PVDF membrane. Membranes were incubated in 5% nonfat milk in TBS (20 mM Tris, 135 mM NaCl) containing 0.1% Tween-20 (TBS-T) for 1 hr. After blocking, the membranes were probed with a 1:500 dilution of anti-CPT1A in 0.5% nonfat milk in TBS-T. After a series of washes in TBS-T, the membranes were incubated with followed by a 1:10,000 dilution of HRP-conjugated goat anti-rabbit IgG. Antibody binding was detected using West Femto SuperSignal chemiluminescent reagents. Relative protein loading was determined with a 1:2,000 dilution of mouse monoclonal antibody to β-Actin followed by a 1:5,000 dilution of HRP-conjugated sheep anti-mouse IgG.
Animal Protocol
Animal/Disease Models: 80 male C57BLKS/J lar-Leprdb/db mice[3]
Doses: 1 mg/kg
Route of Administration: Intraperitoneally injected; twice every week
Experimental Results: Serum alkaline phosphatase was increased in db/db mice, which event was Dramatically suppressed by Etomoxir. Serum level of osteocalcin, a marker of bone formation, was decreased in db/db mice and Etomoxir markedly inhibited the reduction of osteocalcin. Serum tartrate-resistant acid phosphatase was elevated in db/db mice which phenomenon was Dramatically suppressed by Etomoxir.

Animal/Disease Models: Rats[4]
Doses: 20 mg/kg
Route of Administration: Injected daily; for 8 days
Experimental Results: Etomoxir-treated rats displayed a 44% decreased cardiac CPT-I activity.
Male Lewis rats, weighing 150–200 g, were used in the present study. Animals were kept on a 12 h:12 h light/dark cycle and fed a Purina Chow diet and water ad libitum. The rats were divided into two groups: (1) control and (2) etomoxir. Etomoxir (20 mg/kg of body weight) was dissolved in 0.9% (w/v) NaCl and administered intraperitoneally for 8 days. Control rats received saline. The last injection was given 24 h before the experiment. Ethical approval for all experimental procedures was obtained from the Experimental Animal Committee of the Maastricht University, and the study conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85–23, revised 1996). Animals were anaesthetized with an intraperitoneal injection of a nembutal and heparin (3:1) mixture. Subsequently, the heart was removed for LCFA uptake studies and for analyses of transporter protein contents. [4]
80 male C57BLKS/J lar-Leprdb/db mice and 20 wild type littermates (8 week) were obtained from Model Animal Research Centre, Nanjing University, China. Mice were housed in cages in a limited access room, under temperature (23 ± 2 °C) and humidity (55 ± 5%) condition with a standard light (12 h light/dark) cycle and fed a regular diet. db/db mice were randomly divided into four groups: db/db group, Etomoxir group, MitoQ group, and PFT-α group. In the Etomoxir group, mice were intraperitoneally injected with 1 mg/kg Etomoxir twice every week. In the MitoQ group, 50 μmol/L MitoQ was given to the mice in water. Water bottles, containing either MitoQ, were covered with aluminum foil, and all bottles were refilled every 3 days. In the PFT-α group, mice were intraperitoneally injected with 1 mg/kg PFT-α twice every week. WT mice were administrated with vehicle instead. The experimental period is 8 weeks. At the end, peripheral blood samples and bone marrow cells were harvested for the assays. 100 C57BL/6 mice obtained from Experimental Animal Centre of Fourth Military Medical University. The mice were randomly divided into five groups: Control group, HF diet group, Etomoxir group, MitoQ group, and PFT-α group. Mice in HF diet, Etomoxir, MitoQ, and PFT-α groups were given high fat diet for 20 weeks and mice in Etomoxir, MitoQ, and PFT-α groups were administrated with Etomoxir, MitoQ, and PFT-α in the last 10 weeks. The administration of Etomoxir, MitoQ, and PFT-α were identical to the treatment in db/db mice. Control mice were administrated with vehicle instead [3].
References

[1]. The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations.Sci Rep. 2018 Apr 19;8(1):6289.

[2]. Etomoxir mediates differential metabolic channeling of fatty acid and glycerol precursors into cardiolipin in H9c2 cells.J Lipid Res. 2003 Feb;44(2):415-23.

[3]. FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus.Sci Rep. 2015 Jul 31;5:12724.

[4]. Etomoxir-induced partial carnitine palmitoyltransferase-I (CPT-I) inhibition in vivo does not alter cardiac long-chain fatty acid uptake and oxidation rates.Biochem J. 2009 Apr 15;419(2):447-55.

Additional Infomation
2-[6-(4-chlorophenoxy)hexyl]-2-oxiranecarboxylic acid ethyl ester is an aromatic ether.
See also: Etomoxir (annotation moved to).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H23CLO4
Molecular Weight
326.81500
Exact Mass
320.079
Elemental Analysis
C, 56.17; H, 5.66; Cl, 11.05; Na, 7.17; O, 19.95
CAS #
82258-36-4
Related CAS #
828934-40-3 (S-isomer); Etomoxir sodium salt;828934-41-4; 82258-36-4 (racemate) 124083-20-1 (free acid); 132308-39-5 (potassium salt)
PubChem CID
123823
Appearance
Typically exists as solid at room temperature
Density
1.163g/cm3
Boiling Point
405ºC at 760 mmHg
Flash Point
142.6ºC
Index of Refraction
1.519
LogP
4.001
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
11
Heavy Atom Count
22
Complexity
342
Defined Atom Stereocenter Count
0
SMILES
CCOC(C1(CO1)CCCCCCOC1=CC=C(Cl)C=C1)=O
InChi Key
DZLOHEOHWICNIL-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H23ClO4/c1-2-20-16(19)17(13-22-17)11-5-3-4-6-12-21-15-9-7-14(18)8-10-15/h7-10H,2-6,11-13H2,1H3
Chemical Name
ethyl 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate
Synonyms
B-807-54; B 80754; B80754; B-80754
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.0598 mL 15.2989 mL 30.5979 mL
5 mM 0.6120 mL 3.0598 mL 6.1196 mL
10 mM 0.3060 mL 1.5299 mL 3.0598 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03144128 COMPLETED Dietary Supplement: Vitamin D
Dietary Supplement: Placebo
Cancer Cachexia
Vitamin D Deficiency
David Travis Thomas 2018-05-23 Not Applicable
Contact Us