yingweiwo

Diphenyl Blue

Cat No.:V29505 Purity: ≥98%
Diphenyl Blue (Trypan Blue) is a cell viability dye, the most widely used dead cell identification dye, and is often used to detect cell membrane integrity and cell viability.
Diphenyl Blue
Diphenyl Blue Chemical Structure CAS No.: 72-57-1
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Diphenyl Blue (Trypan Blue) is a cell viability dye, the most widely used dead cell identification dye, and is often used to detect cell membrane integrity and cell viability. Diphenyl Blue staining is one of the methods used in tissue and cell culture. When cells lose their activity or their cell membranes are incomplete, Diphenyl Blue can dye them blue. Normal living cells have an intact cell membrane structure that can repel Diphenyl Blue and the cells will not be dyed blue. However, macrophages can phagocytose Diphenyl Blue, so it can be used as a live stain for macrophages.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
1. Composition of trypan blue working solution 1.1 Prepare the storage solution using 0.85% Nacl and 0.4% trypan blue. For example, use 100 mL 0.85% Nacl oxygen 400 mg trypan blue. Note: It is recommended to use pre-prepared serum-free cells or PBS immediate storage solution after dispensing 1.2 working solution to make a 0.04% trypan blue working solution. Note: Please alter the trypan blue working solution according to the actual situation. 2. Cell staining 2.1 Suspension cells: Collect cells by centrifugation, add PBS and wash twice, 5 minutes each time. Adherent cells: Discard the culture medium and add islet digested cells. After centrifugation and discarding the supernatant, add PBS and wash twice, 5 minutes each time. 2.2 Add 1 mL of trypan blue working solution and place it in the freezer for 5 minutes. 2.3 Centrifuge at 400 g for 3-4 minutes at 4°C and discard the supernatant. 2.4 Wash the cells twice with PBS, giving them five minutes each time. 2.5 After resuspending the cells with 1 mL of serum-free cells or PBS, the cell death rate can be more reliably assessed by counting directly under the cells or counting after taking photographs under the cells.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Trypan blue ... was observed in animals to pass from bloodstream through walls of vessels of iris & choroid, but not through walls of retinal vessels.
Following sc or ip injections into mice or rats, trypan blue is rapidly absorbed & widely distributed throughout the body. Max serum concentrations are ... within 2 hr; it appears bound to serum proteins with ... rapid excretion in urine & uptake by the reticulo-endothelial system.
Trypan blue never reaches the rat embryo, but accumulates in maternal reticuloendothelial system and in the placenta.
Experiments with ring-labelled radioactive trypan blue did not give evidence of any embryonic incorporation of the (14)C. The absence of teratogenic action after the initiation of chorio-allantoic placentation also indicated that yolk sac function was important in pathogenesis. The dye can be visualized in the cells of the visceral yolk sac.
For more Absorption, Distribution and Excretion (Complete) data for Trypan blue (6 total), please visit the HSDB record page.
Metabolism / Metabolites
/Trypan blue/ is reduced in vitro by a rat liver enzyme to ortho-tolidine & 2,8-diamino-1-naphthol-3,6-disulfonic acid.
Six azo dyes, including trypan blue, were reduced, N-acetylated, and N-conjugated. No N,N'-diacetylated metabolites were detected in rat urine.
Azo dyes based on beta-diketone coupling components exist preferentially as the tautomeric hydrazones. A series of hydrazone dyes based on benzidine and benzidine congeners ... was prepared. The hydrazone dyes were resistant to enzymatic reduction by FMN supplemented hamster liver post-mitochondrial supernatant (S-9); under identical conditions, azo dyes such as trypan blue were rapidly reduced.
Metabolism experiments were conducted with rats dosed with 9 azo dyes based on dimethyl-, dimethoxy-, or dichlorobenzidine to determine whether the free amine congeners, their monoacetyl or diacetyl metabolites, or alkaline hydrolyzable conjugates were excreted in the urine. 2-mg doses were administered and urine samples were collected at intervals up to 96 hr. Peak levels of metabolites were excreted either 0-12 or 12-24 hr after administration and, in 7 of 9 instances, no metabolites persisted in the urine after 48 hr. Minimum detectable levels of all metabolites were 12 ppb or less. All 9 dyes were converted to measurable levels of their benzidine-congener-based metabolites in rats.
The ability of rat liver microsomes from phenobarbitone pretreated animals to reduce the azo groups of amaranth, sunset yellow, congo red, trypan blue, chloramine sky blue FF and direct black 38 was measured in vitro. The dyes amaranth and sunset yellow acted as positive controls. Of the dyes derived from (the carcinogen) benzidine or its congeners, only direct black 38 was reduced to an appreciable extent; the rate of reduction was 10% of that for amaranth. The dyes were tested for mutagenicity in the Salmonella/microsome assay, the only active compound being direct black 38. Mutagenicity of this dye may be due in part to the mutagen 1,2,4-triaminobenzene. Mutagenic activity and azo-reduction of direct black 38 was independent of the presence of oxygen. Mammalian liver may play only a minor or negligible role in the azo-reduction of dyes derived from benzidine or its congeners.
Toxicity/Toxicokinetics
Interactions
The effect of L-glutamic acid on the embryolethal and teratogenic action of trypan blue was investigated in Wistar albino rats. L-glutamic acid was either incorporated into the diet, from gestation day 2 to day 20, or suspended in sesame oil and administered by gavage, from gestation day 6 to day 10. A teratogenic dose of trypan blue was injected at day 8 of pregnancy, either intraperitoneally (14 mg/kg maternal body weight) or subcutaneously (160 mg/kg). The amount of glutamic acid consumed, after the injection of trypan blue, ranged from 600 to 1,500 mg/rat/day. At day 20, the fetuses were examined. Glutamic acid failed consistently to protect the rat embryo against the lethal and teratogenic action of trypan blue. These results are in contrast to those obtained in mice. The administration of sesame oil alone was found to cause embryonic death but not malformations.
Non-Human Toxicity Values
LD50 Rat oral 6200 mg/kg
LD50 Mouse sc 267 mg/kg
LD50 Mouse iv 328 mg/kg
References

[1]. Daly, M. L., DeRosa, C. A., Kerr, C., Morris, W. A., & Fraser, C. L. (2016). Blue thermally activated delayed fluorescence from a biphenyl difluoroboron β-diketonate. RSC Advances, 6(85), 81631–81635. doi:10.1039/c6ra18374c.

Additional Infomation
Trypan Blue (Commercial Grade) can cause cancer according to California Labor Code.
Trypan blue is a bluish-gray to dark blue powder. (NTP, 1992)
Trypan blue is an organosulfonate salt that is the tetrasodium salt of 3,3'-[(3,3'-dimethylbiphenyl-4,4'-diyl)didiazene-2,1-diyl]bis(5-amino-4-hydroxynaphthalene-2,7-disulfonic acid). It has a role as a histological dye, a fluorochrome and a carcinogenic agent. It is an organosulfonate salt and an organic sodium salt. It contains a trypan blue(4-).
Trypan Blue is an acid azo dye commonly used as a stain to distinguish viable from non-viable cells. It turns dead cells blue and viable cells unstained. It is a known animal carcinogen and an experimental teratogen.
A diazo-naphthalene sulfonate that is widely used as a stain.
See also: Trypan Blue (annotation moved to).
Mechanism of Action
A dose of 50 mg per kg /of trypan blue/ appears to be the optimum teratogenic dose. A characteristic observation with trypan blue is that with treatment after the 9th day of gestation defects are rare. This fact has supported other evidence that the mechanism of action was dependent on disruption of yolk sac nutrition. ... Studies have produced evidence indicating a possible action of trypan blue on a nutritive function of the visceral yolk sac. The failure of the trypan blue to act directly upon the embryo is generally held ... .
The absence of teratogenic action after the initiation of chorio-allantoic placentation also indicated that yolk sac function was important in pathogenesis. The dye can be visualized in the cells of the visceral yolk sac. ... . The protein-trypan blue complex is concentrated in lysosomes. Through disruption of the enzymatic digestive process in the yolk sac lysosome, trypan blue may interfere with normal embryonic nutritive processes.
Therapeutic Uses
A diazo-naphthalene sulfonate that is widely used as a stain.
A therapeutic agent in the treatment of sleeping sickness. /Former use/
MembraneBlue 0.15% is indicated for use as an aid in ophthalmic surgery by staining the epiretinal membranes during ophthalmic surgical vitrectomy procedures, facilitating removal of the tissue.
/Experimental Therapy/ Trypan blue can be used to stain the superior oblique tendon for easy identification and delineation of it at its insertion, making the current surgical technique less difficult.
For more Therapeutic Uses (Complete) data for Trypan blue (6 total), please visit the HSDB record page.
Drug Warnings
Adverse reactions reported following use of VisionBlue include discoloration of high water content hydrogen intraocular lenses (see Contraindications) and inadvertent staining of the posterior lens capsule and vitreous face. Staining of the posterior lens capsule or staining of the vitreous face is generally self limited, lasting up to one week.
It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when trypan blue is administered to a nursing woman.
VisionBlue is contraindicated when a non-hydrated (dry state), hydrophilic acrylic intraocular lens is planned to be inserted into the eye because the dye may be absorbed by the intraocular lens and stain theintraocular lens.
It is recommended that after injection all excess VisionBlue be immediately removed from the eye by thorough irrigation of the anterior chamber.
FDA Pregnancy Risk Category: C /RISK CANNOT BE RULED OUT. Adequate, well controlled human studies are lacking, and animal studies have shown risk to the fetus or are lacking as well. There is a chance of fetal harm if the drug is given during pregnancy; but the potential benefits may outweigh the potential risk./
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C34H24N6NA4O14S4
Molecular Weight
960.8052
Exact Mass
959.982
CAS #
72-57-1
PubChem CID
6296
Appearance
Light brown to black solid powder
Density
1.007 g/mL at 20 °C
Melting Point
>300 °C(lit.)
LogP
10.785
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
20
Rotatable Bond Count
5
Heavy Atom Count
62
Complexity
1790
Defined Atom Stereocenter Count
0
InChi Key
GLNADSQYFUSGOU-UHFFFAOYSA-J
InChi Code
InChI=1S/C34H28N6O14S4.4Na/c1-15-7-17(3-5-25(15)37-39-31-27(57(49,50)51)11-19-9-21(55(43,44)45)13-23(35)29(19)33(31)41)18-4-6-26(16(2)8-18)38-40-32-28(58(52,53)54)12-20-10-22(56(46,47)48)14-24(36)30(20)34(32)42;;;;/h3-14,41-42H,35-36H2,1-2H3,(H,43,44,45)(H,46,47,48)(H,49,50,51)(H,52,53,54);;;;/q;4*+1/p-4
Chemical Name
tetrasodium;5-amino-3-[[4-[4-[(8-amino-1-hydroxy-3,6-disulfonatonaphthalen-2-yl)diazenyl]-3-methylphenyl]-2-methylphenyl]diazenyl]-4-hydroxynaphthalene-2,7-disulfonate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~25 mg/mL (~26.02 mM)
H2O : ~1 mg/mL (~1.04 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.0408 mL 5.2039 mL 10.4079 mL
5 mM 0.2082 mL 1.0408 mL 2.0816 mL
10 mM 0.1041 mL 0.5204 mL 1.0408 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us