Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
50mg |
|
||
Other Sizes |
|
Purity: ≥98%
Targets |
fluorogenic substrate; phosphatase
|
---|---|
ln Vitro |
Protein tyrosine phosphatase 1B (PTP1B) hydrolyzes DIFMUP (100 μM; 0–4 min) in a time-dependent manner, with the initial rate of reaction rising as the enzyme concentration increases (30–600 ng/mL) [2].
|
Enzyme Assay |
For determination of the appropriate enzyme concentration, PTPs were prediluted in reaction buffer to the indicated concentrations in a final volume of 90 μl. Reactions were initiated by adding 10 μl containing 1 mM DIFMUP and then incubated at 37 °C while monitoring the hydrolysis for 10 min.[2]
|
References |
|
Additional Infomation |
6,8-difluoro-4-methylumbelliferyl phosphate is a member of coumarins. It is functionally related to a coumarin. It is a conjugate acid of a 6,8-difluoro-4-methylumbelliferyl phosphate (2-).
Fluorogenic substrates based on 4-methylumbelliferone (4-MU) have been widely used for the detection of phosphatase and glycosidase activities. One disadvantage of these substrates, however, is that maximum fluorescence of the reaction product requires an alkaline pH, since 4-MU has a pK(a) approximately 8. In an initial screening of five phosphatase substrates based on fluorinated derivatives of 4-MU, all with pK(a) values lower than that of 4-MU, we found that one substrate, 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), was much improved for the detection of acid phosphatase activity. When measured at the preferred acid phosphatase reaction pH (5.0), DiFMUP yielded fluorescence signals that were more than 10-fold higher than those of 4-methylumbelliferyl phosphate (MUP). DiFMUP was also superior to MUP for the detection of protein phosphatase 1 activity at pH 7 and was just as sensitive as MUP for the detection of alkaline phosphatase activity at pH 10. A beta-galactosidase substrate was also prepared based on 6, 8-difluoro-4-methylumbelliferone. This substrate, 6, 8-difluoro-4-methylumbelliferyl beta-d-galactopyranoside (DiFMUG), was found to be considerably more sensitive than the commonly used substrate 4-methylumbelliferyl beta-d-galactopyranoside (MUG), for the detection of beta-galactosidase activity at pH 7. DiFMUP and DiFMUG should have great utility for the continuous assay of phosphatase and beta-galactosidase activity, respectively, at neutral and acid pH.[1] The fluorogenic substrate 6,8-difluoro-4-methylumbiliferyl phosphate (DIFMUP) has been widely used for the detection of serine and threonine phosphatase activities. Here we describe the use of this substrate for the characterization of protein tyrosine phosphatases (PTPs) and for the screening for PTP inhibitors. The measured kinetic and inhibitor constants for DIFMUP cleavage were comparable with those of the widely used but less discriminative and practicable substrates, para-nitrophenylphosphate and phosphotyrosine-containing peptides, respectively. Furthermore, the continuous and highly sensitive assay allows fast and accurate investigations of the type, kinetic behavior, and binding mode of small-molecule inhibitors. We discuss the validation of this assay system for various PTPs and its use in inhibitor screening for PTP1B.[2] |
Molecular Formula |
C10H7O6F2P
|
---|---|
Molecular Weight |
292.12958
|
Exact Mass |
291.995
|
Elemental Analysis |
C, 41.12; H, 2.42; F, 13.01; O, 32.86; P, 10.60
|
CAS # |
214491-43-7
|
PubChem CID |
2786976
|
Appearance |
White to off-white solid
|
LogP |
1.851
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
8
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
19
|
Complexity |
461
|
Defined Atom Stereocenter Count |
0
|
SMILES |
FC1=CC2C(C)=CC(=O)OC=2C(F)=C1OP(O)(O)=O
|
InChi Key |
DZANYXOTJVLAEE-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C10H7F2O6P/c1-4-2-7(13)17-9-5(4)3-6(11)10(8(9)12)18-19(14,15)16/h2-3H,1H3,(H2,14,15,16)
|
Chemical Name |
(6,8-Difluoro-4-methyl-2-oxochromen-7-yl) dihydrogen phosphate
|
Synonyms |
DiFMUP; 214491-43-7; 6,8-difluoro-4-methyl-umbelliferyl phosphate; 6,8-difluoro-4-methylumbelliferyl phosphate; (6,8-difluoro-4-methyl-2-oxochromen-7-yl) dihydrogen phosphate; 6,8-difluoro-MUP; SCHEMBL329996; BDBM13432;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~50 mg/mL (~171.16 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.4231 mL | 17.1157 mL | 34.2313 mL | |
5 mM | 0.6846 mL | 3.4231 mL | 6.8463 mL | |
10 mM | 0.3423 mL | 1.7116 mL | 3.4231 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.