yingweiwo

Decabromodiphenyl ethane

Alias: DeBDethane DBDPE Decabromodiphenyl ethane
Cat No.:V19402 Purity: ≥98%
Decabromodiphenyl ethane is a novel brominated flame retardant widely used in thermoplastics, textilesthermosets, and coatings to prevent/resist the spread of fire.
Decabromodiphenyl ethane
Decabromodiphenyl ethane Chemical Structure CAS No.: 84852-53-9
Product category: New12
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
15mg
100g
200g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

Decabromodiphenyl ethane is a novel brominated flame retardant widely used in thermoplastics, textiles thermosets, and coatings to prevent/resist the spread of fire.

Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Male rats were orally administrated with corn oil containing 100 mg/kg bw/day of DBDPE or BDE-209 for 90 days, after which the levels of DBDPE and BDE-209 in the liver, kidney, and adipose were measured. Biochemical parameters, including thyroid hormone levels, 13 clinical chemistry parameters, and the mRNA expression levels of certain enzymes were also monitored. Results showed DBDPE was found in all tissues with concentrations 3-5 orders of magnitude lower than BDE-209.
/MILK/ We have examined several emerging brominated flame retardants (BFRs) including 2-ethyl-1-hexyl-2,3,4,5-tetrabromobenzoate (TBB), bis(2-ethylhexyl) tetrabromophthalate (TBPH), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), 4,5,6,7-tetrabromo-1,1,3-trimethyl-3-(2,3,4,5-tetrabromophenyl)-indane (OBIND), and decabromodiphenyl ethane (DBDPE) in paired human maternal serum (n = 102) and breast milk (n = 105) collected in 2008-2009 in the Sherbrooke region in Canada. Three legacy BFRs were also included in the study for comparison: decabromobiphenyl (BB-209), 2,2',4,4',5,5'-hexabromobiphenyl (BB-153), and 2,2',4,4',5,5'-hexabromodiphenyl ethers (BDE-153). TBB, BB-153, and BDE-153 had detection frequencies greater than 55% in both serum and milk samples. Their lipid weight (lw) adjusted median concentrations (ng g(-1) lw) in serum and milk were 1.6 and 0.41 for TBB, 0.48 and 0.31 for BB-153, and 1.5 and 4.4 for BDE-153, respectively. The detection frequencies for the other BFRs measured in serum and milk were 16.7% and 32.4% for TBPH, 3.9% and 0.0% for BTBPE, 2.0% and 0.0% for BB-209, 9.8% and 1.0% for OBIND, and 5.9% and 8.6% for DBDPE. The ratio of TBB over the sum of TBB and TBPH (fTBB) in serum (0.23) was lower than that in milk (0.46), indicating TBB has a larger tendency than TBPH to be redistributed from blood to milk. Overall, these data confirm the presence of non-PBDE BFRs in humans, and the need to better understand their sources, routes of exposure, and potential human health effects
Decabromodiphenyl ethane (DBDPE), a replacement for decabromodiphenyl ether (deca-BDE), was investigated in captive Chinese alligators from China. DBDPE was detected in adult tissues, neonates and eggs of Chinese alligators with concentrations ranging from 4.74-192, 0.24-1.94, and 0.01-0.51 ng g(-1) lipid weight, respectively. Compared to PBDEs and PCBs, DBDPE contamination was limited in Chinese alligators. Additionally, DBDPE concentrations in adult muscles were one to three orders of magnitude higher than those in neonates and eggs, suggesting the limited maternal transfer potential of DBDPE in Chinese alligators. ...
Hen muscle, eggs, and newborn chick tissues (muscle and liver) were collected from an electronic waste recycling site in southern China. The authors examined the maternal transfer, potential metabolism, and tissue distribution of several halogenated flame retardants (HFRs) during egg formation and chicken embryo development. The pollutant composition changes significantly from hen muscle to eggs and from eggs to tissues of newborn chicks. Higher-halogenated chemicals, such as octa- to deca-polybrominated diphenyl ether (PBDE) congeners, deca-polybrominated biphenyl (PBB209), and dechlorane plus (DP), are less readily transferred to eggs compared with lower-halogenated chemicals. During embryo development, PBDEs are the most likely to be metabolized, whereas decabromodiphenyl ethane (DBDPE) is the least. The authors also observed selective maternal transfer of anti-DP and stereoselective metabolism of syn-DP during chicken embryo development. During tissue development, liver has greater affinity than the muscle for chemcials with a high log octanol-water partition coefficient, with the exception of DBDPE. The differences in metabolism potential of different chemicals in chicken embryos cause pollutant composition alterations. Halogenated flame retardant from maternal transfer and tissue distribution also exhibited chemical specificity, especially for DBDPE. Levels of DBDPE were elevated along with the full process from hen muscle to eggs and from eggs to chick tissues. ...
The extensive use of polybrominated diphenyl ethers (PBDEs) and decabromodiphenyl ethane (DBDPE) has made them widespread contaminants in abiotic environments, but data regarding their bioavailability to benthic organisms are sparse. The bioaccumulation potential of PBDEs and DBDPE from field-collected sediment was evaluated in the oligochaete Lumbriculus variegatus using a 49-d exposure, including a 28-d uptake and a 21-d elimination phase. All PBDEs and DBDPE were bioavailable to the worms with biota-sediment accumulation factors (BSAFs) ranging from 0.0210 g organic carbon/g lipid to 4.09 g organic carbon/g lipid. However, the bioavailability of highly brominated compounds (BDE-209 and DBDPE) was poor compared with that of other PBDEs, and this was confirmed by their relatively low freely dissolved concentrations (C(free)) measured by solid-phase microextraction. The inverse correlation between BSAFs and hydrophobicity was explained by their uptake (k(s)) and elimination (k(e)) rate constants. While ke changed little for PBDEs, ks decreased significantly when chemical hydrophobicity increased. The difference in bioaccumulation kinetics of brominated flame retardants in fish and the worms was explained by their physiological difference and the presence of multiple elimination routes. The appropriateness of 28-d bioaccumulation testing for BSAF estimation was validated for PBDEs and DBDPE. In addition, C(free) was shown to be a good indicator of bioavailability.
Metabolism / Metabolites
At least seven unknown compounds were observed in the DBDPE-exposed rats, indicating that DBDPE biotransformation occurred in rats. These compounds were identified by comparing relative retention times and full-scan mass spectra of DBDPE debrominated products from a photolytic degradation experiment using GC/EI-MS and GC/ECNI-MS analysis. The results showed that debromination of DBDPE to lower brominated BDPEs were not the primary metabolic pathway observed in rats. Two of the metabolites were proposed tentatively as MeSO(2)-nona-BDPE and EtSO(2)-nona-BDPE using GC/EI-MS, but their structures require further confirmation by other techniques and authentic standards. In addition, evidence of a biological response to DBDPE and BDE-209 and their metabolites in rats are different.
The present study assessed and compared the oxidative and reductive biotransformation of brominated flame retardants, including established polybrominated diphenyl ethers (PBDEs) and emerging decabromodiphenyl ethane (DBDPE) using an in vitro system based on liver microsomes from various arctic marine-feeding mammals: polar bear (Ursus maritimus), beluga whale (Delphinapterus leucas), and ringed seal (Pusa hispida), and in laboratory rat as a mammalian model species. Greater depletion of fully brominated BDE209 (14-25% of 30 pmol) and DBDPE (44-74% of 90 pmol) occurred in individuals from all species relative to depletion of lower brominated PBDEs (BDEs 99, 100, and 154; 0-3% of 30 pmol). No evidence of simply debrominated metabolites was observed. Investigation of phenolic metabolites in rat and polar bear revealed formation of two phenolic, likely multiply debrominated, DBDPE metabolites in polar bear and one phenolic BDE154 metabolite in polar bear and rat microsomes. For BDE209 and DBDPE, observed metabolite concentrations were low to nondetectable, despite substantial parent depletion. These findings suggested possible underestimation of the ecosystem burden of total-BDE209, as well as its transformation products, and a need for research to identify and characterize the persistence and toxicity of major BDE209 metabolites. Similar cause for concern may exist regarding DBDPE, given similarities of physicochemical and environmental behavior to BDE209, current evidence of biotransformation, and increasing use of DBDPE as a replacement for BDE209.
Toxicity/Toxicokinetics
Toxicity Summary
IDENTIFICATION AND USE: Decabromodiphenyl ethane (DBDPE) has been used as a substitute for decabrominated diphenyl ether (BDE-209) and therefore it is currently used in more or less the same applications as BDE-209, such as manufacture of plastics (including polyester and vinyl ester resins) and rubber products, as well as in different applications related to manufacture of textiles and leather. This compound is also found in polymers used for electronic and electrical applications. DBDPE could also be used in adhesives and sealants. HUMAN STUDIES: When tested in vitro in HepG2 cells, DBDPE was cytotoxic with anti-proliferation effect and apoptosis was accompanied with overproduction of reactive oxygen species. ANIMAL STUDIES: Male rats were orally administrated with 100 mg/kg DBDPE for 90 days. Results showed DBDPE was found in all tissues. At least seven unknown compounds were observed in the DBDPE-exposed rats, indicating that DBDPE biotransformation occurred in rats. In mice treated with DBDPE for 30 days the levels of alanine aminotransferase or ALT and aspartate aminotransferase or AST of higher dose treatment groups were markedly increased. Blood glucose levels of treatment groups were higher than those of control group. There was also an induction in TSH, T3, and fT3. Uridinediphosphoglucuronosyltransferase (UDPGT), 7-pentoxyresorufin O-depentylase (PROD), and ethoxyresorufin-O-deethylase (EROD) activities were found to have been increased significantly in the high dose group. Histopathologic liver changes were characterized by hepatocyte hypertrophy and cytoplasmic vacuolization. In rats, DBDPE induced oxidative stress, elevated blood glucose levels, increased CYP2B2 mRNA, CYP2B1/2 protein, PROD activity, and induced CYP3A2 mRNA, CYP3A2 protein, and luciferin benzylether debenzylase (LBD) activity. No evidence of maternal toxicity, developmental toxicity, or teratogenicity was observed in rats or rabbits treated with DBDPE at dosage levels up to 1,250 mg/kg-day. DBDPE was not genotoxic in bacterial assays (Ames/Salmonella typhimurium and Escherichia coli WP2 reverse mutation assays) and no chromosomal aberrations were reported in Chinese hamster lung cells. ECOTOXICITY STUDIES: In Grass carp (Ctenopharyngodon idella) 5 miRNAs were significantly down-regulated and 36 miRNAs were significantly up-regulated after DBDPE exposure indicating that miRNAs have potential for use as biomarkers. The fish hepatocyte assay, based on the synthesis and secretion of vitellogenin from isolated male liver cells produced a clear dose-response curve in the presence of DBDPE. DBDPE induced the induction of hepatic EROD activity at low test concentrations, but started to inhibit the activity at higher concentrations. Also, the induction of the hepatocyte conjugation activity, UDPGT, was induced with no signs of inhibition even at the highest test concentration. The reduced EROD activity resulted in a drop in the production of vitellogenin by the cells. In vivo tests showed that DBDPE was acutely toxic to water fleas, the 48 hr EC-50 value being 19 ug/L. Moreover, DBDPE reduced the hatching rates of exposed zebra-fish eggs and raised significantly the mortality of hatched larvae. Treatment-related effects were identified for E. fetida reproduction, C. sativa survival, and L. esculentum and A. cepa height and dry weight. The most sensitive endpoints were decreased height and dry weight for A. cepa and decreased reproduction for E. fetida.
Non-Human Toxicity Values
LD50 Rat oral 5000 mg/kg bw[ECHA; 1,1'-(ethane-1,2-diyl)bis
LD50 Rabbit dermal 2000 mg/kg bw[ECHA; 1,1'-(ethane-1,2-diyl)bis
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C14H6BR10
Molecular Weight
973.24
Exact Mass
961.214
CAS #
84852-53-9
PubChem CID
10985889
Appearance
White powder
Density
2.8±0.1 g/cm3
Boiling Point
676.2±50.0 °C at 760 mmHg
Melting Point
345°C
Flash Point
346.6±24.8 °C
Vapour Pressure
0.0±2.0 mmHg at 25°C
Index of Refraction
1.727
LogP
11.09
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
0
Rotatable Bond Count
3
Heavy Atom Count
24
Complexity
352
Defined Atom Stereocenter Count
0
SMILES
BrC1C(Br)=C(Br)C(CCC2C(Br)=C(Br)C(Br)=C(Br)C=2Br)=C(Br)C=1Br
InChi Key
BZQKBFHEWDPQHD-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H4Br10/c15-5-3(6(16)10(20)13(23)9(5)19)1-2-4-7(17)11(21)14(24)12(22)8(4)18/h1-2H2
Chemical Name
1,2,3,4,5-pentabromo-6-[2-(2,3,4,5,6-pentabromophenyl)ethyl]benzene
Synonyms
DeBDethane DBDPE Decabromodiphenyl ethane
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.0275 mL 5.1375 mL 10.2750 mL
5 mM 0.2055 mL 1.0275 mL 2.0550 mL
10 mM 0.1027 mL 0.5137 mL 1.0275 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us