Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
Bleomycin metabolite
|
---|---|
ln Vitro |
Metabolic inactivation of the antitumor antibiotic bleomycin is believed to be mediated exclusively via the action of bleomycin hydrolase, a cysteine proteinase that is widely distributed in nature. While the spectrum of antitumor activity exhibited by the bleomycins is believed to reflect the anatomical distribution of bleomycin hydrolase within the host, little has been done to characterize the product of the putative inactivation at a chemical or biochemical level. The present report describes the synthesis of deamidobleomycin demethyl A(2) (3) and deamido bleomycin A(2) (4), as well as the respective aglycones. These compounds were all accessible via the key intermediate N(alpha)-Boc-N(beta)-[1-amino-3(S)-(4-amino-6-carboxy-5-methylpyrimidin-2-yl)propion-3-yl]-(S)-beta-aminoalanine tert-butyl ester (16). Synthetic deamido bleomycin A(2) was shown to be identical to the product formed by treatment of bleomycin A(2) with human bleomycin hydrolase, as judged by reversed-phase HPLC analysis and (1)H NMR spectroscopy. Deamido bleomycin A(2) was found to retain significant DNA cleavage activity in DNA plasmid relaxation assays and had the same sequence selectivity of DNA cleavage as bleomycin A(2). The most significant alteration of function noted in this study was a reduction in the ability of deamido bleomycin A(2) to mediate double-strand DNA cleavage, relative to that produced by BLM A(2) [1].
|
References |
[1]. J Am Chem Soc. 2002 Aug 14;124(32):9476-88.
|
Molecular Formula |
C55H83N16O22S3+
|
---|---|
Molecular Weight |
1416.53652
|
Exact Mass |
1415.5
|
Elemental Analysis |
C, 46.64; H, 5.91; N, 15.82; O, 24.85; S, 6.79
|
CAS # |
65154-36-1
|
PubChem CID |
5488286
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
-9.1
|
Hydrogen Bond Donor Count |
20
|
Hydrogen Bond Acceptor Count |
32
|
Rotatable Bond Count |
36
|
Heavy Atom Count |
96
|
Complexity |
2580
|
Defined Atom Stereocenter Count |
17
|
SMILES |
CC1=C(N=C(N=C1N)C(CC(=O)N)NCC(C(=O)O)N)C(=O)NC(C(C2=CN=CN2)OC3C(C(C(C(O3)CO)O)O)OC4C(C(C(C(O4)CO)O)OC(=O)N)O)C(=O)NC(C)C(C(C)C(=O)NC(C(C)O)C(=O)NCCC5=NC(=CS5)C6=NC(=CS6)C(=O)NCCC[S+](C)C)O
|
InChi Key |
LEWBSQHVMFJVKL-FSFWWQNWSA-O
|
InChi Code |
InChI=1S/C55H82N16O22S3/c1-20-33(68-45(71-44(20)58)25(12-31(57)75)63-13-24(56)52(86)87)49(84)70-35(41(26-14-60-19-64-26)91-54-43(39(79)37(77)29(15-72)90-54)92-53-40(80)42(93-55(59)88)38(78)30(16-73)89-53)50(85)65-22(3)36(76)21(2)46(81)69-34(23(4)74)48(83)62-10-8-32-66-28(18-94-32)51-67-27(17-95-51)47(82)61-9-7-11-96(5)6/h14,17-19,21-25,29-30,34-43,53-54,63,72-74,76-80H,7-13,15-16,56H2,1-6H3,(H12-,57,58,59,60,61,62,64,65,68,69,70,71,75,81,82,83,84,85,86,87,88)/p+1/t21-,22?,23+,24-,25-,29-,30+,34-,35-,36-,37+,38+,39-,40-,41-,42-,43-,53+,54?/m0/s1
|
Chemical Name |
3-[[2-[2-[2-[[(2S,3R)-2-[[(2S,3S)-4-[[(2S,3R)-2-[[6-amino-2-[(1S)-3-amino-1-[[(2S)-2-amino-2-carboxyethyl]amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-3-[(3S,4S,5S,6S)-3-[(2R,3S,4S,5R,6R)-4-carbamoyloxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-(1H-imidazol-5-yl)propanoyl]amino]-3-hydroxy-2-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]ethyl]-1,3-thiazol-4-yl]-1,3-thiazole-4-carbonyl]amino]propyl-dimethylsulfanium
|
Synonyms |
Deamido bleomycin A2; Deamido Bleomycin A 2; Deamido Bleomycin A2;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.7059 mL | 3.5297 mL | 7.0595 mL | |
5 mM | 0.1412 mL | 0.7059 mL | 1.4119 mL | |
10 mM | 0.0706 mL | 0.3530 mL | 0.7059 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.