Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
Other Sizes |
|
Deacetylanisomycin, an inactive derivative of Anisomycin, is a novel and potent growth regulator from plants, acting as a protein synthesis inhibitor.
Targets |
Inactive derivative of Anisomycin
|
---|---|
ln Vivo |
Following contiguous pairings of light and rotation, light alone elicits a conditioned contraction of Hermissenda's foot, indicative of an associative memory. After a 5-min retention interval, this conditioned response was evident following two or nine (but not one) conditioning trials but persisted for 90 min only after nine trials. In vivo incubation of animals in the protein synthesis inhibitor anisomycin (ANI; 1 microM) did not affect the conditioned response at the 5-min retention interval but significantly attenuated conditioned responding at the 90-min interval even following nine training trials. Deacetylanisomycin (DANI; 1 microM; an inactive form of anisomycin) had no effect on either 5- or 90-min retention. In a companion procedure, groups of isolated nervous systems were exposed to comparable light and rotation pairings, and the B photoreceptors (considered a site of storage for the associative memory) underwent electrophysiological analysis. An increase in neuronal excitability (indexed by depolarizing voltage responses to injected current) in the B photoreceptors paralleled the expression of conditioned responding in intact animals, that is, two training trials produced a short-term increase in excitability that dissipated within 45 min, whereas nine trials produced a persistent (at least 90-min) increase in excitability. In a fmal experiment, isolated nervous systems were exposed to nine training trials, and ANI or DANI was either present in the bathing medium before and during training or was introduced 5 min after training. Following training in ANI, a short-term (5- to 45-min) but not persistent (90-min) increase in excitability in the B photoreceptors was observed. ANI had no effect on either the short-term or persistent increase in excitability if the drug was applied 5 min after the last (ninth) training trial, and DANI had no effect on training-induced increases in excitability at any retention intervals. These results suggest that short-term retention in Hermissenda is protein synthesis independent but that new protein synthesis initiated during or shortly after the training event is necessary for even 90-min retention. Moreover, these results indicate that under some conditions, a critical threshold of training must be exceeded to initiate protein synthesis-dependent retention[1].
|
References |
[1]. Protein synthesis-dependent memory and neuronal enhancement in Hermissenda are contingent on parameters of training and retention. Learn Mem. 1998 Mar-Apr;4(6):462-77.
|
Additional Infomation |
Deacetylanisomycin has been reported in Streptomyces with data available.
|
Molecular Formula |
C12H17NO3
|
---|---|
Molecular Weight |
223.27
|
Exact Mass |
223.121
|
Elemental Analysis |
C, 64.55; H, 7.67; N, 6.27; O, 21.50
|
CAS # |
27958-06-1
|
Related CAS # |
1963-47-9 (HCl); 27958-06-1
|
PubChem CID |
11790817
|
Appearance |
Typically exists as solid at room temperature
|
Vapour Pressure |
0mmHg at 25°C
|
LogP |
0.26
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
4
|
Rotatable Bond Count |
3
|
Heavy Atom Count |
16
|
Complexity |
216
|
Defined Atom Stereocenter Count |
3
|
SMILES |
COC1C=CC(C[C@H]2NC[C@H](O)[C@H]2O)=CC=1
|
InChi Key |
UMWAPBCLJQSOJX-WOPDTQHZSA-N
|
InChi Code |
InChI=1S/C12H17NO3/c1-16-9-4-2-8(3-5-9)6-10-12(15)11(14)7-13-10/h2-5,10-15H,6-7H2,1H3/t10-,11+,12+/m1/s1
|
Chemical Name |
(2R,3S,4S)-2-[(4-methoxyphenyl)methyl]pyrrolidine-3,4-diol
|
Synonyms |
Anisomycin, deacetyl- (-)-Deacetylanisomycin; Deacetylanisomycin; 27958-06-1; (-)-Deacetylanisomycin; Anisomycin, deacetyl-; UNII-97W54EY1WU; 97W54EY1WU; (2R,3S,4S)-2-((4-Methoxyphenyl)methyl)-3,4-pyrrolidinediol; DEACETYLANISOMYCIN FROM STREPTOMYCES*GRISEOLUS; Deacetylanisomycin
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 4.4789 mL | 22.3944 mL | 44.7888 mL | |
5 mM | 0.8958 mL | 4.4789 mL | 8.9578 mL | |
10 mM | 0.4479 mL | 2.2394 mL | 4.4789 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.