yingweiwo

Colistin

Alias: colistin; 1066-17-7; N-[(2S)-4-amino-1-[[(2S,3R)-1-[[(2S)-4-amino-1-oxo-1-[[(3S,6S,9S,12S,15R,18S,21S)-6,9,18-tris(2-aminoethyl)-3-[(1R)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxobutan-2-yl]-5-methylheptanamide; Colobreathe; Promixin; Colistin,(S); CHEMBL499783; SCHEMBL1979092;
Cat No.:V43526 Purity: ≥98%
Colistin (Polymyxin E) is a polypeptide antibiotic with oral activity.
Colistin
Colistin Chemical Structure CAS No.: 1066-17-7
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Colistin:

  • Colistin sulfate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Colistin (Polymyxin E) is a polypeptide antibiotic with oral activity. Colistin has good inhibitory activity against a variety of Gram-negative (Gram-) rod-shaped bacteria (including multi-drug-resistant Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae). Colistin is associated with nephrotoxicity and may be utilized in the research/study of Gram-negative (Gram-) bacterial infections.
Biological Activity I Assay Protocols (From Reference)
Targets
Bacterial cell wall synthessis; lipopolysaccharides and phospholipids in the outer cell membrane of gram-negative bacteria
ln Vitro
Colistins work like detergents to kill gram-negative bacteria. This mechanism includes competitively displacing divalent cations (calcium and magnesium) from the negatively charged phosphate groups of membrane lipids, as well as interaction with the lipopolysaccharides and phospholipids of the outer membrane through electrostatic interference[4]. Colistin, also known as polymyxin E, is a good treatment for infections brought on by gram-negative bacteria that are resistant to many drugs because of its quick bacterial killing, limited spectrum of action, and concomitant delayed development of resistance. Commercially, colistin comes in two forms: colistin methanesulfonate (sodium) for parenteral use and colistin (sulfate), primarily for topical use[4].
ln Vivo
Colistin (polymyxin E) (16 mg/kg/day, i.p.) was found to enrich cell cycle arrest genes, indicating that cellular stress or injury caused by colistin inhibits the progression of the cell cycle via p53. [1]. Blood urea nitrogen (BUN), creatinine, and pathological evidence of acute tubular necrosis and apoptosis are all elevated when colonistin (16 mg/kg/day, intraperitoneally) is administered [1].
Colistin (polymixin E) is an antibiotic prescribed with resurging frequency for multidrug resistant gram negative bacterial infections. It is associated with nephrotoxicity in humans in up to 55% of cases. Little is known regarding genes involved in colistin nephrotoxicity. A murine model of colistin-mediated kidney injury was developed. C57/BL6 mice were administered saline or colistin at a dose of 16 mg/kg/day in 2 divided intraperitoneal doses and killed after either 3 or 15 days of colistin. After 15 days, mice exposed to colistin had elevated blood urea nitrogen (BUN), creatinine, and pathologic evidence of acute tubular necrosis and apoptosis. After 3 days, mice had neither BUN elevation nor substantial pathologic injury; however, urinary neutrophil gelatinase-associated lipocalin was elevated (P = 0.017). An Illumina gene expression array was performed on kidney RNA harvested 72 h after first colistin dose to identify differentially expressed genes early in drug treatment. Array data revealed 21 differentially expressed genes (false discovery rate < 0.1) between control and colistin-exposed mice, including LGALS3 and CCNB1. The gene signature was significantly enriched for genes involved in cell cycle proliferation. RT-PCR, immunoblot, and immunostaining validated the relevance of key genes and proteins. This murine model offers insights into the potential mechanism of colistin-mediated nephrotoxicity. Further studies will determine whether the identified genes play a causative or protective role in colistin-induced nephrotoxicity[3].
Enzyme Assay
MIC determination.[4]
MICs were determined by both broth macrodilution and microdilution in cation-adjusted Mueller-Hinton broth ccording to NCCLS standards. Strains were considered resistant to colistin and colistin methanesulfonate if the MICs were ≥32 mg/liter.
Time-kill kinetics.[4]
The time-kill kinetics of four strains, ATCC 27853 and three clinical isolates, two of which were mucoid, were examined. The clinical isolates were selected in order to have a range of MICs within the susceptible category. The MICs of colistin and colistin methanesulfonate, respectively, for the four strains were as follows: ATCC 27853, 4 and 16 mg/liter; 18982, 4 and 8 mg/liter; 19056, 1 and 8 mg/liter; and 20223, 4 and 16 mg/liter. Colistin and colistin methanesulfonate were added to a logarithmic-phase broth culture of approximately 106 CFU/ml to yield concentrations of 0, 0.5, 1, 2, 4, 8, 16, 32, and 64 times the MIC for the strain under study. Subcultures for viable counts were performed on nutrient agar at 0, 5, 10, 15, 20, 25, 30, 45, and 60 min and 2, 3, 4, and 24 h after antibiotic addition. Viable counts were determined after 24 h of incubation of subcultures at 37°C.
PAE.[4]
The in vitro PAE was determined by the standard in vitro method for two of the three clinical strains noted above and the ATCC strain with both agents. For each experiment, P. aeruginosa (≈106 CFU/ml) in logarithmic phase growth was exposed for 15 min (for colistin) or 1 h (for colistin methanesulfonate) in Mueller-Hinton broth to the antibiotics at concentrations of 0.5, 1, 2, 4, 8, and 16 times the MIC. Fifteen minutes of exposure was used for colistin due to its very rapid bactericidal effect, to ensure that there were adequate numbers of bacteria for sampling at the end of the exposure interval. Antibiotic was removed by twice centrifuging at 3,000 × g for 10 min, decanting the supernatant, and resuspending in prewarmed broth. Viable counts were performed at 0, 1, 2, 3, 4, 5, 6, and 24 h on nutrient agar. A growth control was performed in the same fashion but without exposure to antibiotic. The colonies were counted after 24 h of incubation at 37°C. PAE was determined by comparing regrowth of treated and growth control cultures, using the standard formula of the time for the control culture to increase 10-fold subtracted from the time for the treated culture to do the same.
Animal Protocol
Animal/Disease Models: C57/BL6 black mouse [1]
Doses: 16 mg/kg/day
Route of Administration: 16 mg/kg/day, ip
Experimental Results: Apoptosis, necrosis and PCNA staining were detected in mice.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Very poor absorption from gastrointestinal tract.
/COLISTIMETHATE SODIUM/...IS EXCRETED IN DOG URINE TO MUCH GREATER EXTENT THAN SIMPLE SULFATE FORM, & THEORETICALLY SHOULD BE BETTER IN URINARY INFECTIONS.
DRUG PASSES FROM MATERNAL TO FETAL CIRCULATION. PREMATURE INFANTS INJECTED WITH 1 MG/KG DO NOT DEVELOP EFFECTIVE PLASMA CONCN OF ANTIBIOTIC; WITH DOSE OF 2 MG/KG, PEAK VALUE OF ABOUT 5 UG/ML IS REACHED IN 30 MIN. /COLISTIMETHATE/
PLASMA CONCN ARE HIGHER IN PERSONS WITH RENAL INSUFFICIENCY & ARE RELATED TO DEGREE OF RENAL DYSFUNCTION. COLISTIMETHATE IS EXCRETED MAINLY BY GLOMERULAR FILTRATION. URINE CONCN EXCEED 200 UG/ML DURING FIRST 2 HR AFTER USUAL IM DOSE. /COLISTIMETHATE/
DRUG IS EXCRETED MORE RAPIDLY IN CHILDREN THAN IN ADULTS. COLISTIMETHATE DOES NOT GAIN ACCESS TO CEREBROSPINAL FLUID, EVEN WHEN MENINGES ARE INFLAMED. /COLISTIMETHATE/
For more Absorption, Distribution and Excretion (Complete) data for COLISTIN (8 total), please visit the HSDB record page.
Metabolism / Metabolites
As 80% of the dose can be recovered unchanged in the urine, and there is no biliary excretion, it can be assumed that the remaining drug is inactivated in the tissues, however the mechanism is unknown.
...hydrolyzed in vivo to colistin and possibly other metabolites with fewer substituted amino groups...
AFTER IV INJECTION RABBITS, 75% DOSE EXCRETED IN URINE UNCHANGED. SMALL AMT FOUND IN BILE. COLISTIN-N-GLUCURONIDE FOUND IN URINE (1.7% OF DOSE) & BILE (6.7% OF DOSE). /SODIUM COLISTIN METHANE SULFONATE/
Biological Half-Life
5 hours
IM INJECTION OF 150 MG OF COLISTIMETHATE IN ADULTS PRODUCE PEAK PLASMA CONCN OF 6 UG/ML @ 2 HR; THIS DECLINES WITH HALF-TIME OF 2 HR. SAME QUANTITY GIVEN IV YIELDS MAXIMAL PLASMA CONCN OF 18 UG/ML; THIS FALLS TO ABOUT 0.4 UG/ML @ 12 HR. /COLISTIMETHATE/
Objectives: To determine the disposition of colistin methanesulphonate (CMS) and colistin following intravenous (iv) administration of CMS in rats.
Methods: Five rats received a single iv bolus of 15 mg/kg CMS. Plasma concentrations of CMS and of colistin formed by the hydrolysis of CMS were determined by HPLC. The pharmacokinetic parameters of CMS and colistin were calculated using non-compartmental analysis.
Results: Total body clearance, volume of distribution at steady state and terminal half-life of CMS averaged 11.7 mL/min/kg, 299 mL/kg and 23.6 min, respectively. The mean terminal half-life of colistin was 55.7 min. Approximately 60% of the dose was eliminated via the urine in 24 h and presented as a mixture of CMS and colistin.
Conclusions: Colistin appeared in plasma soon after administration of CMS, indicating rapid conversion of CMS into colistin. CMS had a shorter terminal half-life than did colistin, indicating that the disposition of the colistin generated from CMS was rate-limited by its elimination. Most of the dose was recovered in urine, half in the form of colistin. The high percentage of colistin recovered in urine was believed to be formed by hydrolysis of CMS in the bladder and in the collection vessel, and/or conversion from CMS in the kidney.[2]
Toxicity/Toxicokinetics
Colistin has no significant genotoxic activity or structural alerts for carcinogenicity, is poorly absorbed from the gastrointestinal tract, and no neoplastic or preneoplastic lesions were observed in 26-week studies in rats given repeated oral or parenteral doses. As such, the Committee concluded that colistin compounds are unlikely to be carcinogenic. The relevant endpoint for risk assessment was determined to be disruption of the colonization barrier in the colon via toxicity to gut flora, the most sensitive organism of which was E. coli, with a minimum inhibitory concentration for 50% of strains (MIC50) of 1 µg colistin base/ml in an in vitro study. The Committee established an ADI of 0–7 µg/kg bw/d (420 µg/p/d for 60-kg adult) on the basis of the MIC50 for E. coli converted to an upper bound ADI value using the following formula: ADI (µg/kg bw/d) = (MIC50 (1 µg/ml) x mass of colonic contents (220 g))/(bioavailable fraction of dose (0.5) x safety factor (1) x bodyweight (60 kg)). The Committee recommended MRLs, measured as colistin A+B, in cattle, sheep, goats, pigs, chickens, turkeys and rabbits of 150 µg/kg liver, muscle and fat (including skin+fat, where applicable), 200 µg/kg in kidney, 300 µg/kg in hens’ eggs, and 50 µg/kg in cows’ and sheep’s milk. The MRLs recommended would result in a TMDI of 229 µg (55% ADI). The calculated EDI values represent 4% (for chickens) to 9% (for cattle) of the upper bound of the ADI. The EDI of 56.9 µg (14% ADI) is calculated using the highest median values from among the tissues and food-producing species.
Interactions
COLISTIMETHATE...MAY INTERACT...WITH CARBENICILLIN. /COLISTIMETHATE/
COLISTIN METHANESULFONATE REDUCED BY MORE THAN 20% THE AMT OF URINARY SALICYLAMIDE GLUCURONIDE FORMED IN CHILDREN FROM 20 MG/KG DOSE SALICYLAMIDE. /COLISTIN METHANESULFONATE/
Since nephrotoxic and/or neurotoxic effects may be additive, concurrent or sequential use of colistimethate sodium and other drugs with similar toxic potentials (e.g., aminoglycosides, amphotericin B, capreomycin, methoxyflurane, polymyxin B sulfate, vancomycin) should be avoided, if possible. /Colistimethate sodium/
References
[1]. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti Infect Ther. 2012 Aug;10(8):917-34.
[2]. Pharmacokinetics of colistin methanesulphonate and colistin in rats following an intravenous dose of colistin methanesulphonate.
[3]. Cell cycle arrest in a model of colistin nephrotoxicity. Physiol Genomics. 2013 Oct 1;45(19):877-88.
[4]. In vitro pharmacodynamic properties of colistin and colistin methanesulfonate againstPseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 2001 Mar;45(3):781-5.
Additional Infomation
Cyclic polypeptide antibiotic from Bacillus colistinus. It is composed of Polymyxins E1 and E2 (or Colistins A, B, and C) which act as detergents on cell membranes. Colistin is less toxic than Polymyxin B, but otherwise similar; the methanesulfonate is used orally.
Colistin has been reported in Rhizopus arrhizus with data available.
Cyclic polypeptide antibiotic from Bacillus colistinus. It is composed of Polymyxins E1 and E2 (or Colistins A, B, and C) which act as detergents on cell membranes. Colistin is less toxic than Polymyxin B, but otherwise similar; the methanesulfonate is used orally.
See also: Colistimethate Sodium (annotation moved to).
Drug Indication
For the treatment of acute or chronic infections due to sensitive strains of certain gram-negative bacilli, particularly Pseudomonas aeruginosa.
Mechanism of Action
Colistin is a surface active agent which penetrates into and disrupts the bacterial cell membrane. Colistin is polycationic and has both hydrophobic and lipophilic moieties. It interacts with the bacterial cytoplasmic membrane, changing its permeability. This effect is bactericidal. There is also evidence that polymyxins enter the cell and precipitate cytoplasmic components, primarily ribosomes.
POLYMYXIN B IS SURFACE-ACTIVE AGENT... CONTAINING LIPOPHILIC & LIPOPHOBIC GROUPS SEPARATED WITHIN MOLECULE. /POLYMYXIN B/
PERMEABILITY OF THE BACTERIAL MEMBRANE CHANGES IMMEDIATELY ON CONTACT WITH DRUG. SENSITIVITY TO POLYMYXIN B APPARENTLY IS RELATED TO THE PHOSPHOLIPID CONTENT OF THE CELL WALL-MEMBRANE COMPLEX. /POLYMYXIN B/
Colistin acts like a cationic detergent and binds to and damages the bacterial cytoplasmic membrane of susceptible bacteria. Damage to the bacterial cytoplasmic membrane alters the osmotic barrier of the membrane and causes leakage of essential intracellular metabolites and nucleosides.
Therapeutic Uses
Antibiotics, Peptide
THERAPEUTIC INDICATIONS FOR COLISTIN ARE ESSENTIALLY SAME AS THOSE FOR POLYMYXIN B. INFECTIONS OF CERTAIN TYPES CAUSED BY PSEUD AERUGINOSA ARE ESPECIALLY SUSCEPTIBLE.
PRIMARY USE OF POLYMYXIN B IS FOR TREATMENT OF INFECTIONS CAUSED BY GRAM-NEGATIVE BACTERIA, ESPECIALLY PSEUDOMONAS. ...IS EFFECTIVE IN TREATMENT OF URINARY TRACT INFECTIONS CAUSED BY PSEUDOMONAS OR OTHER GRAM-NEGATIVE BACILLI RESISTANT TO OTHER ANTIMICROBIAL AGENTS... /POLYMYXIN B/
/POLYMYXIN B & COLISTIMETHATE SODIUM/...RECOMMENDED FOR TREATING PERITONITIS & PNEUMONIA, BUT SOME AUTHORITIES QUESTION THEIR EFFECTIVENESS FOR THESE PURPOSES. /COLISTIMETHATE SODIUM/
For more Therapeutic Uses (Complete) data for COLISTIN (11 total), please visit the HSDB record page.
Drug Warnings
ADVERSE REACTIONS TO COLISTIMETHATE HAVE BEEN NOTED IN 20% OF PT GIVEN THE DRUG; THEY ARE GENERALLY REVERSIBLE... /COLISTIMETHATE/
COLISTIMETHATE SODIUM SHOULD NOT BE ADMIN INTRATHECALLY. /COLISTIMETHATE SODIUM/
...NOT INDICATED FOR INFECTIONS CAUSED BY PROTEUS OR NEISSERIA SPECIES. /SODIUM COLISTIMETHATE/
POSSIBLE EMBRYOTOXIC & TERATOGENIC EFFECTS HAVE BEEN REPORTED WHEN COLISTIMETHATE SODIUM WAS ADMINISTERED TO PREGNANT RABBITS. /NA COLISTIMETHATE/
For more Drug Warnings (Complete) data for COLISTIN (13 total), please visit the HSDB record page.
Pharmacodynamics
Colistin is a polymyxin antibiotic agent. Polymyxins are cationic polypeptides that disrupt the bacterial cell membrane through a detergentlike mechanism. With the development of less toxic agents, such as extended-spectrum penicillins and cephalosporins, parenteral polymyxin use was largely abandoned, except for the treatment of multidrug-resistant pulmonary infections in patients with cystic fibrosis. More recently, however, the emergence of multidrug-resistant gram-negative bacteria, such as Pseudomonas aeruginosa and Acinetobacter baumannii, and the lack of new antimicrobial agents have led to the revived use of the polymyxins.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C52H98N16O13
Molecular Weight
1155.43392
Exact Mass
1154.75
CAS #
1066-17-7
Related CAS #
Colistin sulfate;1264-72-8
PubChem CID
5311054
Appearance
Typically exists as solid at room temperature
Density
1.25g/cm3
Boiling Point
1536.8ºC at 760mmHg
Melting Point
200-220 °C
200 - 220 °C
Flash Point
883.3ºC
Vapour Pressure
0mmHg at 25°C
Index of Refraction
1.573
LogP
1.535
Hydrogen Bond Donor Count
18
Hydrogen Bond Acceptor Count
18
Rotatable Bond Count
28
Heavy Atom Count
81
Complexity
2050
Defined Atom Stereocenter Count
12
SMILES
CCC(CCCC(N[C@H](C(N[C@H](C(N[C@H](C(N[C@H]1CCNC(=O)[C@]([H])([C@H](O)C)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O)=O)CCN)=O)[C@H](O)C)=O)CCN)=O)C
InChi Key
YKQOSKADJPQZHB-QNPLFGSASA-N
InChi Code
InChI=1S/C52H98N16O13/c1-9-29(6)11-10-12-40(71)59-32(13-19-53)47(76)68-42(31(8)70)52(81)64-35(16-22-56)44(73)63-37-18-24-58-51(80)41(30(7)69)67-48(77)36(17-23-57)61-43(72)33(14-20-54)62-49(78)38(25-27(2)3)66-50(79)39(26-28(4)5)65-45(74)34(15-21-55)60-46(37)75/h27-39,41-42,69-70H,9-26,53-57H2,1-8H3,(H,58,80)(H,59,71)(H,60,75)(H,61,72)(H,62,78)(H,63,73)(H,64,81)(H,65,74)(H,66,79)(H,67,77)(H,68,76)/t29?,30-,31-,32+,33+,34+,35+,36+,37+,38+,39-,41+,42+/m1/s1
Chemical Name
N-[(2S)-4-amino-1-[[(2S,3R)-1-[[(2S)-4-amino-1-oxo-1-[[(3S,6S,9S,12S,15R,18S,21S)-6,9,18-tris(2-aminoethyl)-3-[(1R)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxobutan-2-yl]-5-methylheptanamide
Synonyms
colistin; 1066-17-7; N-[(2S)-4-amino-1-[[(2S,3R)-1-[[(2S)-4-amino-1-oxo-1-[[(3S,6S,9S,12S,15R,18S,21S)-6,9,18-tris(2-aminoethyl)-3-[(1R)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxobutan-2-yl]-5-methylheptanamide; Colobreathe; Promixin; Colistin,(S); CHEMBL499783; SCHEMBL1979092;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.8655 mL 4.3274 mL 8.6548 mL
5 mM 0.1731 mL 0.8655 mL 1.7310 mL
10 mM 0.0865 mL 0.4327 mL 0.8655 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Ceftazidime-Avibactam Use in Critically Ill Patients With Carbapenem-Resistant Enterobacteriaceae Infections
CTID: NCT05258851
Phase: Phase 3
Status: Terminated
Date: 2024-06-14
Cefiderocol and Ampicillin-sulbactam vs. Colistin +/- Meropenem for Carbapenem Resistant A. Baumannii
CTID: NCT05922124
Phase: Phase 4
Status: Not yet recruiting
Date: 2024-04-16
Pharmacokinetics of Colistin in Critically Ill Patients With Extracorporeal Membrane Oxygenation
CTID: NCT05542446
Phase: Phase 4
Status: Terminated
Date: 2024-01-31
The Effect of Curcumin Against Colistin-induced Nephrotoxicity
CTID: NCT05613361
Phase: Phase 3
Status: Recruiting
Date: 2023-10-31
IV Colistin for Pulmonary Exacerbations: Improving Safety and Efficacy
CTID: NCT02918409
Phase: Phase 4
Status: Completed
Date: 2023-04-21
Contact Us