Size | Price | |
---|---|---|
Other Sizes |
ln Vivo |
The study found that CCC (300 mg/L) resulted in a large rise in the biomass of lily leaves and stems, a significant drop in the gibberellic acid (GA) content in lily bulbs, and an increase in indole-3-acetic acid (IAA) content in leaves.
|
---|---|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Chlormequat was determined in four /sow/ milk samples in the range of 0.4 ng/g to 1.2 ng/g... The distribution of Chlorocholine chloride (CCC) in the eggs of laying hens was studied using 15N-CCC. Twelve layers (37 weeks old) were divided into four groups and used in this study consisting of three feeding phases. In phase one (7 days), all the hens received a CCC-free diet [165 g CP/kg dry matter (DM); 11.58 MJ ME/kg DM]. In phase two (11 days), four levels of 15N-CCC: 0, 5, 50 and 250 ppm were added to the respective diets, while in phase three (7 days), CCC-free feed was again offered. Egg samples were taken and the 15N content of egg yolk and albumin were determined. At the end of phase two, there was a significant (p < 0.05) increase in 15N content in egg yolk from hens fed the 50 and 250 ppm CCC diets and in albumin from hens fed the 250 ppm CCC diet. The estimated 15N-CCC residue was 1.71, 6.64, 28.80 ppm in egg yolk and 1.58, 1.08 and 4.50 ppm in albumin from hens fed 5, 50 and 250 ppm CCC, respectively. The CCC residue, from quantitative analysis ranged from 0.21 to 0.93 and 0.93 to 2.43 ppm in yolk of hens fed 50 and 250 ppm CCC, respectively, whereas a range of 0.40-1.46 ppm, was found in the albumin of hens fed 250 ppm. The difference in measured CCC in yolk and albumin and that estimated from 15N-CCC could have been due to breakdown products of 15N-CCC. Seven days after withdrawal of 15N-CCC, the estimated 15N-CCC residue in egg yolk decreased to 0.43, 2.45 and 15.59 ppm, on 5, 50 and 250 ppm CCC dietary treatments, respectively, and to 2.46 ppm in albumin from hens fed 250 ppm CCC. The higher increase in 15N content could have been due to a higher incorporation of 15N-CCC into yolk than albumin during the process of rapid yolk deposition. This experiment showed that consumed CCC is distributed both into yolk and albumin in a dose dependent manner and that CCC is metabolized in laying hens. However, the level of CCC in the diet which could lead to accumulation of detectable CCC levels in eggs as observed in this study, is much higher than the established maximum residual limits in grains. In mammals, following oral administration, 97% is eliminated within 24 hr, principally as the unchanged substance. Metabolism / Metabolites An experiment was conducted to evaluate the metabolic products of chlorocholine chloride (CCC) in eggs and meat of laying hens fed a diet containing (15)N-CCC. Ten brown laying hens were randomly divided into two groups of five each. One group was offered (15)N-CCC free diet while the other group received a diet with 100 ppm (15)N-CCC for 11 days. Samples of eggs and meat from the laying hens were collected. Egg yolks and albumen were separated. Meat was collected from the breast and femur. The metabolic products of CCC were measured using ion trap electrospray ionization mass spectrometry (ion trap-ESI-MS/MS). Determination of CCC or its metabolites in eggs and meat showed that CCC was metabolized to choline. Corresponding MS/MS spectra were obtained for m/z 104 (choline) or 105 ((15)N-choline), whereas nothing was detected at m/z 122 (CCC) or 123 ((15)N-CCC). The results from this study indicate that CCC will be metabolized in tissues of laying hens. When (14)C-labeled CCC was applied to kohlrabi, cauliflower, or tomatoes, degradation of CCC was very small. The first product was probably choline which entered the plant pool. Small amounts of labeled methyl groups from choline were found as S-methyl methionine. CCC was not degraded when applied to sugarcane. In alfalfa, CCC was slowly metabolized and was primarily incorporated into choline of phosphatidylcholine. Almond seedlings were treated with labeled CCC. Translocation to leaves and to the roots was observed. (14)CO2 was formed within 2 h after application. Radioactivity was observed in 17 known amino acids, an unidentified ninhydrin positive compound, malic acid, citric acid, choline and 2-chloroethylamine. When CCC was incubated in rumen contents or juice under anaerobic conditions, microbial degradation of CCC did not occur. For more Metabolism/Metabolites (Complete) data for CHLORMEQUAT CHLORIDE (7 total), please visit the HSDB record page. |
References |
|
Additional Infomation |
Chlormequat chloride appears as white crystals with a fishlike odor. Used as a plant growth regulator. Said to be effective for cereal grains, tomatoes, and peppers. (EPA, 1998)
Chlormequat chloride is an organic chloride salt comprising equal numbers of chlormequat and chloride ions. A gibberellin biosynthesis inhibitor, it is used as a plant growth retardant to produce plants with sturdier, thicker stalks, facilitating the havesting of ornamental flowers and cereal crops. It has a role as a plant growth retardant and an agrochemical. It is an organic chloride salt and a quaternary ammonium salt. It contains a chlormequat. A plant growth regulator that is commonly used on ornamental plants. Mechanism of Action Chlormequat chloride has been reported in the literature to act at the nicotinic receptor site of the neuromuscular junction. The test material may act as a depolarizing agent at this site, leading to muscular excitation followed by muscle weakness. Acute toxicity may lead to respiratory arrest. Acute toxicity of chlormequat chloride has also been reported to differ by species, which is likely due to sensitivity to depolarizing neuromuscular blockers. |
Molecular Formula |
C5H13CL2N
|
---|---|
Molecular Weight |
158.0694
|
Exact Mass |
157.042
|
CAS # |
999-81-5
|
Related CAS # |
Chlorocholine-d4 chloride;Chlorocholine-d9 chloride;1219257-11-0
|
PubChem CID |
13836
|
Appearance |
White to off-white solid powder
|
Melting Point |
239-243 °C (dec.)(lit.)
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
1
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
8
|
Complexity |
46.5
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
UHZZMRAGKVHANO-UHFFFAOYSA-M
|
InChi Code |
InChI=1S/C5H13ClN.ClH/c1-7(2,3)5-4-6;/h4-5H2,1-3H3;1H/q+1;/p-1
|
Chemical Name |
2-chloroethyl(trimethyl)azanium;chloride
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 6.3263 mL | 31.6316 mL | 63.2631 mL | |
5 mM | 1.2653 mL | 6.3263 mL | 12.6526 mL | |
10 mM | 0.6326 mL | 3.1632 mL | 6.3263 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.