yingweiwo

Cevimeline

Alias: FKS508 SNI 2011AF-102BSNK 508FKS-508 SNI-2011AF 102BSNK-508AF102B SNI2011 SNK508 AF-102B, Cevimeline, FKS 508, HSDB 7286, SNI 2011
Cat No.:V17592 Purity: ≥98%
Cevimeline (FKS-508; SNI-2011;AF-102B; SNK-508; trade name Evoxac) is a potent parasympathomimetic and muscarinic agonist thas has beenapproved for use in the treatment of dry mouth and Sjögrens syndrome, as well as Xerostomia symptoms.
Cevimeline
Cevimeline Chemical Structure CAS No.: 107233-08-9
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Cevimeline:

  • Cevimeline HCl
  • Cevimeline hydrochloride hemihydrate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Cevimeline (FKS-508; SNI-2011; AF-102B; SNK-508; trade name Evoxac) is a potent parasympathomimetic and muscarinic agonist thas has been approved for use in the treatment of dry mouth and Sjögren's syndrome, as well as Xerostomia symptoms.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Cevimeline (0.1-100 μM) raises the intracellular Ca2+ content in parotid gland cells that have been digested [1].
ln Vivo
Male Wistar rats administered with cevimeline (0.008-0.016 mg/kg intraperitoneally) exhibited increased pressor response, increased salivation, and a gradual and sustained rise in parotid gland blood flow. In the subfornical organ, cevimeline, at 0.016 mg/kg, reduces angiotensin II-induced water intake and neuronal activity [1].
Animal Protocol
Animal/Disease Models: Male Wistar rats (8 weeks old) were injected with angiotensin-II[1].
Doses: 0.008 mg/kg, 0.016 mg/kg.
Route of Administration: intraperitoneal (ip) injection.
Experimental Results: Salivation increased slowly and persistently, and blood flow increased. Increased in parotid and pressor responses.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Rapidly absorbed with peak concentration after 1.5 to 2 hours
After 24 hours, 84% of a 30 mg dose of cevimeline was excreted in urine.
6 L/kg
Elimination: Urine: 97%. Feces: 0.5%.
It is not known whether this drug is secreted in human milk.
After administration of a single 30 mg capsule, cevimeline was rapidly absorbed with a mean time to peak concentration of 1.5 to 2 hours. No accumulation of active drug or its metabolites was observed following multiple dose administration. When administered with food, there is a decrease in the rate of absorption, with a fasting T MAX of 1.53 hours and a T MAX of 2.86 hours after a meal; the peak concentration is reduced by 17.3%. Single oral doses across the clinical dose range are dose proportional. Cevimeline has a volume of distribution of approximately 6L/kg and is <20% bound to human plasma proteins. This suggests that cevimeline is extensively bound to tissues; however, the specific binding sites are unknown.
After 24 hours, 84% of a 30 mg dose of cevimeline was excreted in urine. After seven days, 97% of the dose was recovered in the urine and 0.5% was recovered in the feces.
Metabolism / Metabolites
Primarily hepatic, isozymes CYP2D6 and CYP3A4 are responsible for the metabolism of cevimeline. Approximately 44.5% of the drug is converted to cis and trans-sulfoxide, 22.3% to glucuronic acid conjugate, and 4% to N-oxide of cevimeline. Approximately 8% of the trans-sulfoxide metabolite is then converted into the corresponding glucuronic acid conjugate.
The pharmacokinetics and metabolism cevimeline were investigated in six healthy volunteers after a single oral administration of 14(C)-cevimeline. ... The mean recoveries of the metabolites in urine at 24 hr after administration were 16.0% for cevimeline, 35.8% for cevimeline trans-sulfoxide, 8.7% for cevimeline cis-sulfoxide, 4.1% for cevimeline N-oxide, furthermore, two unknown metabolites, UK-1 and UK-2, were detected 14.6% and 7.7%, respectively. LC/MS analysis and hydrolysis studies revealed that UK-1 and UK-2 were glucuronic acid conjugates of cevimeline and cevimeline trans-sulfoxide, respectively.
Isozymes CYP2D6 and CYP3A3/4 are responsible for the metabolism of cevimeline. After 24 hours, 86.7% of the dose was recovered (16.0% unchanged, 44.5% as cis and trans-sulfoxide, 22.3% of the dose as glucuronic acid conjugate and 4% of the dose as N-oxide of cevimeline). Approximately 8% of the trans-sulfoxide metabolite is then converted into the corresponding glucuronic acid conjugate and eliminated. Cevimeline did not inhibit cytochrome P450 isozymes 1A2, 2A6, 2C9, 2C19, 2D6, 2E1, and 3A4.
Biological Half-Life
5 ± 1 hours
Elimination: Approximately 5 hours.
The mean half-life of cevimeline is 5+/-1 hours.
Toxicity/Toxicokinetics
Hepatotoxicity
In prelicensure trials of cevimeline, serum enzyme elevations were no more frequent than with placebo and there were no reports of acute liver injury. Since licensure and more wide scale use, cevimeline has remained free of association with instances of clinically apparent liver injury.
Likelihood score: E (unlikely cause of clinically apparent liver injury).
Protein Binding
< 20%
Interactions
Cevimeline should be administered with caution to patients taking beta adrenergic antagonists, because of the possibility of conduction disturbances. Drugs with parasympathomimetic effects administered concurrently with cevimeline can be expected to have additive effects. Cevimeline might interfere with desirable antimuscarinic effects of drugs used concomitantly. Drugs which inhibit CYP2D6 and CYP3A3/4 also inhibit the metabolism of cevimeline. Cevimeline should be used with caution in individuals known or suspected to be deficient in CYP2D6 activity, based on previous experience, as they may be at a higher risk of adverse events.
References

[1]. Distinct effects of cevimeline and pilocarpine on salivary mechanisms, cardiovascular response and thirst sensation in rats.Arch Oral Biol. 2012 Apr;57(4):421-8. Epub 2011 Nov 17.

[2]. Effectiveness of cevimeline to improve oral health in patients with postradiation xerostomia.Head Neck. 2012 Aug;34(8):1136-42. doi: 10.1002/hed.21894. Epub 2012 Jan 9.

[3]. Cevimeline-induced monophasic salivation from the mouse submandibular gland: decreased Na+ content in saliva results from specific and early activation of Na+/H+ exchange.J Pharmacol Exp Ther. 2011 Apr;337(1):267-74. Epub 2011 Jan 14.

[4]. Cevimeline (Evoxac) overdose.J Med Toxicol. 2011 Mar;7(1):57-9.

[5]. Effects of cevimeline on excitability of parasympathetic preganglionic neurons in the superior salivatory nucleus of rats. Auton Neurosci. 2017 Sep;206:1-7.

Additional Infomation
Cevimeline is a parasympathomimetic agent that act as an agonist at the muscarinic acetylcholine receptors M1 and M3. It is indicated by the Food and Drug Administration for the treatment of dry mouth associated with Sjögren's syndrome.
Cevimeline is an orally available cholinergic agonist that is used to treat symptoms of dry mouth in patients with keratoconjunctivitis sicca (Sjögren syndrome). Cevimeline has not been linked to serum enzyme elevations during therapy or to instances of clinically apparent liver injury.
Cevimeline is a cholinergic analogue with glandular secretion stimulatory activity. Cevimeline binds to and activates muscarinic receptors, thereby increasing the secretions in exocrine salivary and sweat glands. This cholinergic agonist also increases the tone of smooth muscle in the gastrointestinal and urinary tracts. Cevimeline is being studied as a treatment for dry mouth caused by radiation therapy to the head and neck.
Drug Indication
For the treatment of symptoms of dry mouth in patients with Sjögren's Syndrome.
FDA Label
Mechanism of Action
Muscarinic agonists such as cevimeline bind and activate the muscarinic M1 and M3 receptors. The M1 receptors are common in secretory glands (exocrine glands such as salivary and sweat glands), and their activation results in an increase in secretion from the secretory glands. The M3 receptors are found on smooth muscles and in many glands which help to stimulate secretion in salivary glands, and their activation generally results in smooth muscle contraction and increased glandular secretions. Therefore, as saliva excretion is increased, the symptoms of dry mouth are relieved.
Cevimeline hydrochloride, a quinuclidine derivative of acetycholine, is a cholinergic agonist that bind to muscarinic receptors. In sufficient dosages, muscarinic agonists may cause increased exocrine (eg sweat, salivary) gland secretion and increased GI and urinary tract smooth muscle tone. Cevimeline exhibits a higher affinity for muscarinic receptors on lacrimal and salivary gland epithelium than for those on cardiac tissues. Cevimeline is structurally unrelated to other currently available drugs but is pharmacologically similar to pilocarpine, another oral cholinergic agonist that exerts predominantly muscarinic action. Both drug stimulate residual salivary gland tissues that are still functioning despite damage.
Therapeutic Uses
Cevimeline is indicated for the treatment of symptoms of dry mouth commonly associated with Sjogren's syndrome. /Included in US product labeling/
Drug Warnings
FDA Pregnancy Risk Category: C /RISK CANNOT BE RULED OUT. Adequate, well controlled human studies are lacking, and animal studies have shown risk to the fetus or are lacking as well. There is a chance of fetal harm if the drug is given during pregnancy; but the potential benefits may outweigh the potential risk./
The safety and efficacy of cevimeline for the treatment of dementia of Alzheimer's disease has not been established.
Excessive perspiration can occur when using cevimeline, and may cause dehydration. In the event that this occurs, patients should drink extra water and consult with their physician.
Risk of altered cardiac conduction and/or heart rate. Patients with clinically important cardiovascular disease may be unable to compensate for transient changes in hemodynamics or heart rhythm induced by cevimeline. Use with caution and under close medical supervision in patients with a history of cardiovascular disease (e.g., angina pectoris, myocardial infarction).
For more Drug Warnings (Complete) data for CEVIMELINE (14 total), please visit the HSDB record page.
Pharmacodynamics
Cevimeline is a cholinergic agonist which binds to muscarinic receptors. Muscarinic agonists in sufficient dosage can increase secretion of exocrine glands, such as salivary and sweat glands and increase tone of the smooth muscle in the gastrointestinal and urinary tracts.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H17NOS
Molecular Weight
199.31
Exact Mass
199.1031
CAS #
107233-08-9
Related CAS #
Cevimeline hydrochloride;107220-28-0;Cevimeline hydrochloride hemihydrate;153504-70-2;(+)-Cevimeline hydrochloride hemihydrate
PubChem CID
2684
Appearance
Typically exists as solid at room temperature
Density
1.2±0.1 g/cm3
Boiling Point
308.5±42.0 °C at 760 mmHg
Melting Point
195-197ºC
Flash Point
140.4±27.9 °C
Vapour Pressure
0.0±0.7 mmHg at 25°C
Index of Refraction
1.586
LogP
1.23
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
0
Heavy Atom Count
13
Complexity
215
Defined Atom Stereocenter Count
0
SMILES
S1[C@]([H])(C([H])([H])[H])O[C@@]2(C1([H])[H])C([H])([H])N1C([H])([H])C([H])([H])C2([H])C([H])([H])C1([H])[H]
InChi Key
WUTYZMFRCNBCHQ-WPRPVWTQSA-N
InChi Code
1S/C10H17NOS/c1-8-12-10(7-13-8)6-11-4-2-9(10)3-5-11/h8-9H,2-7H2,1H3/t8-,10-/m0/s1
Chemical Name
Spiro(1-azabicyclo(2.2.2)octane-3,5'-(1,3)-oxathiolane), 2'-methyl-, (2'R,3R)-rel-
Synonyms
FKS508 SNI 2011AF-102BSNK 508FKS-508 SNI-2011AF 102BSNK-508AF102B SNI2011 SNK508 AF-102B, Cevimeline, FKS 508, HSDB 7286, SNI 2011
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.0173 mL 25.0865 mL 50.1731 mL
5 mM 1.0035 mL 5.0173 mL 10.0346 mL
10 mM 0.5017 mL 2.5087 mL 5.0173 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us