yingweiwo

Cephalexin hydrochloride hydrate

Alias: Cephalexin hydrochloride; Keftab; Cephalexin HCl; 105879-42-3; Cefalexin hydrochloride; LY061188; UNII-6VJE5G3D98; 6VJE5G3D98;
Cat No.:V17920 Purity: ≥98%
Cephalexin (Cefalexin) HCl monohydrate is an orally bioactive new semi-synthetic cephalosporin antibiotic (antibiotic) with a broad antibacterial spectrum.
Cephalexin hydrochloride hydrate
Cephalexin hydrochloride hydrate Chemical Structure CAS No.: 105879-42-3
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
50mg

Other Forms of Cephalexin hydrochloride hydrate:

  • Cephalexin
  • Cephalexin hydrochloride
  • Cephalexin hydrate
  • Cefalexin lysine
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Cephalexin (Cefalexin) HCl monohydrate is an orally bioactive new semi-synthetic cephalosporin antibiotic (antibiotic) with a broad antibacterial spectrum. Cephalexin (Cefalexin) HCl monohydrate has anti-bacterial effect against a variety of Gram-positive (Gram+) and Gram-negative (Gram-) bacteria. Cephalexin (Cefalexin) HCl monohydrate targets penicillin-binding proteins (PBPs) to inhibit bacterial cell wall assembly. Cephalexin (Cefalexin) HCl monohydrate may be used in study/research of pneumonia, strep throat, bacterial endocarditis, etc.
Biological Activity I Assay Protocols (From Reference)
Targets
Bacterial cell wall synthesis; penicillin binding proteins (PBPs); cephalosporin antibiotic
ln Vitro
Cefalexin hydrochloride monohydrate (10 μg/mL) inactivates an enzyme known as penicillin-binding protein (PBP), which disturbs the synthesis of the polymer peptidoglycan (PG) [1]. With MIC values of 2, 2, 2, 2, 4, 4.4, and 5.7 μg/mL, cephalexin (Cefalexin) hydrochloride monohydrate inhibits a wide range of Gram-positive and Gram-negative bacteria. They are Proteus rettgeri, Alcaligenes sp., and Edwardsiella tarda [2].
ln Vivo
Male Swiss-Webster mice with bacterial infections respond well to cephalexin hydrochloride (cephalexin monohydrate) (0–50 mg/kg; oral; 3.5 hours) in terms of antibacterial activity [2].
Enzyme Assay
Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development.[1]
Animal Protocol
Animal/Disease Models: Bacterially infected male Swiss-Webster mice [2]
Doses: 0-50 mg/kg
Route of Administration: po (po (oral gavage)) 3.5 hrs (hrs (hours))
Experimental Results: Against Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus and several Antimicrobial activity against Gram-negative bacteria in mice.
ADME/Pharmacokinetics
Absorption
Well absorbed from the upper gastrointestinal tract with nearly 100% oral bioavailability. Cephalexin is not absorbed in the stomach but is absorbed in the upper intestine. Patients taking 250mg of cephalexin reach a maximum plasma concentration of 7.7mcg/mL and patients taking 500mg reach 12.3mcg/mL.

Route of Elimination
Cephalexin is over 90% excreted in the urine after 6 hours by glomerular filtration and tubular secretion with a mean urinary recovery of 99.3%. Cephalexin is unchanged in the urine.

Volume of Distribution
5.2-5.8L.

Clearance
Clearance from one subject was 376mL/min.

LESS THAN 10 TO 15%...IS BOUND TO PLASMA PROTEIN, & PLASMA DRUG CONCN FALL RAPIDLY... MORE THAN 90%...IS EXCRETED UNALTERED IN URINE WITHIN 6 HR, PRIMARILY BY RENAL TUBULAR SECRETION. ...THERAPEUTICALLY EFFECTIVE CONCN ARE STILL ACHIEVED IN URINE OF PT WITH DECR RENAL FUNCTION.

CEPHALEXIN...IS WELL ABSORBED FROM GI TRACT. PEAK PLASMA CONCN, REACHED @ ABOUT 1 HR AFTER INGESTION OF DRUG, ARE APPROX 9 & 18 UG/ML AFTER ORAL DOSES OF 250 & 500 MG, RESPECTIVELY. INGESTION OF FOOD MAY DELAY ABSORPTION.

BOTH ABSORPTION & EXCRETION OF CEPHALEXIN ARE IMPAIRED IN NEW-BORN INFANTS, WHERE 24-HR URINARY RECOVERY OF ANTIBIOTIC ACCOUNTED FOR 5-66% OF DAILY ORAL DOSE.
Metabolism / Metabolites
Cephalexin is not metabolized in the body.
Biological Half-Life
The half life of cephalexin is 49.5 minutes in a fasted state and 76.5 minutes with food though these times were not significantly different in the study. The serum half-life of cephalexin is 0.5-1.2 hr in adults with normal renal function. The serum half-life of the drug is reported to be about 5 hr in neonates and 2.5 hr in children 3-12 mo of age. In one study, the serum half-life was 7.7 hr in adults with creatinine clearances of 9.2 ml/min and 13.9 hr in adults with creatinine clearances of 4 ml/min.
Protein Binding
Cephalexin is 10-15% bound to serum proteins including serum albumin.
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Limited information indicates that maternal cephalexin produces low levels in milk that are usually not expected to cause adverse effects in breastfed infants. Cephalexin is an alternative for the treatment of mastitis. Occasionally disruption of the infant's gastrointestinal flora, resulting in diarrhea or thrush have been reported with cephalosporins, but these effects have not been adequately evaluated. A rare case of a severe allergic reaction occurred in an infant previously exposed to intravenous cefazolin whose mother began taking cephalexin while breastfeeding. Cephalexin is acceptable in nursing mothers.

◉ Effects in Breastfed Infants
In a prospective follow-up study, 7 nursing mothers reported taking cephalexin (dosage not specified). Two mothers reported diarrhea in their infants. No rashes or candidiasis were reported among the exposed infants.
A prospective, controlled study asked mothers who called an information service about adverse reactions experience by their breastfed infants. One of 11 cephalexin-exposed infants reportedly developed diarrhea during maternal cephalexin therapy.
A woman received intravenous cephalothin 1 g every 6 hours for 3 days. Her breastfed infant had a green liquid stool, severe diarrhea, discomfort and crying. The mother's drug regimen was then changed to oral cephalexin 500 mg plus oral probenecid 500 mg 4 times daily for another 16 days. The infant continued to have diarrhea during this time. The authors rated the diarrhea as probably related to cephalexin in milk.
A 4-month-old infant was treated with intravenous cefazolin for a urinary tract infection. Nine days after being discharged and cefazolin discontinuation, the infant developed a blistering rash over most of the body that was diagnosed as toxic epidermal necrolysis (TEN). The infant was being breastfed (extent unspecified) by his mother who had begun cephalexin 2 days prior to the onset of symptoms. A lymphocyte transformation test performed 4 weeks after treatment for TEN was completed found sensitization to both cefazolin and cephalexin. The infant's reaction was probably caused by cephalexin in breastmilk after initial sensitization and subsequent cross-reaction to cefazolin.

◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
View More

◈ What is cephalexin?
Cephalexin is an antibiotic medication that has been used to treat infections such as Staphylococcus aureus (Staph) and Escherichia coli (E. coli). Some brand names for cephalexin are Keflex® and Keftab®.Sometimes when people find out they are pregnant, they think about changing how they take their medication, or stopping their medication altogether. However, it is important to talk with your healthcare providers before making any changes to how you take your medication. Your healthcare providers can talk with you about the benefits of treating your condition and the risks of untreated illness during pregnancy.Having certain infections (such as a Staph or E. coli infection )during pregnancy can increase the chance for pregnancy-related problems or infections in a newborn baby. MotherToBaby has fact sheets on Staph and E. coli infections here: https://mothertobaby.org/fact-sheets/staphylococcus-aureus-pregnancy/ and https://mothertobaby.org/fact-sheets/e-coli-pregnancy/.

◈ I take cephalexin. Can it make it harder for me to get pregnant?
Studies have not been done in humans to see if cephalexin can make it harder to get pregnant. In animal studies, cephalexin did not affect fertility (ability to get pregnant).

◈ Does taking cephalexin increase the chance of miscarriage?
Miscarriage is common and can occur in any pregnancy for many different reasons. In a study of 262 people who took cephalexin during pregnancy, there was no increase in miscarriages compared to a similar group of people who did not take cephalexin.

◈ Does taking cephalexin increase the chance of birth defects?
Every pregnancy starts out with a 3-5% chance of having a birth defect. This is called the background risk. Information on the use of cephalexin in pregnancy is limited. In a study of 262 people who took cephalexin during pregnancy, there was no increased chance for birth defects above the background risk.

◈ Does taking cephalexin in pregnancy increase the chance of other pregnancy-related problems?
Studies have not been done to see if cephalexin increases the chance for pregnancy-related problems such as preterm delivery (birth before week 37) or low birth weight (weighing less than 5 pounds, 8 ounces [2500 grams] at birth).

◈ Does taking cephalexin in pregnancy affect future behavior or learning for the child?
Studies have not been done to see if cephalexin can cause behavior or learning issues for the child.

◈ Breastfeeding while taking cephalexin:
Cephalexin gets into breast milk in small amounts. In reports of 20 babies exposed to cephalexin through breast milk, 4 had diarrhea. There is one report of a baby getting a rash after being breastfed, due to a sensitivity to cephalexin. If you suspect the baby has any symptoms (such as diarrhea or rash), contact the child’s healthcare provider. Be sure to talk to your healthcare provider about all your breastfeeding questions.

◈ If a male takes cephalexin, could it affect fertility or increase the chance of birth defects?
Studies have not been done to see if cephalexin could affect male fertility (ability to get partner pregnant) or increase the chance of birth defects above the background risk. Some infections, such as Staph or E.coli, might affect male fertility. In general, exposures that fathers or sperm donors have are unlikely to increase risks to a pregnancy. For more information, please see the MotherToBaby fact sheet Paternal Exposures at https://mothertobaby.org/fact-sheets/paternal-exposures-pregnancy/.

References

[1]. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014 Dec 4;159(6):1300-11.

[2]. Cefadroxil, a new broad-spectrum cephalosporin. Antimicrob Agents Chemother. 1977 Feb;11(2):324-30.

Additional Infomation
Cephalexin Hydrochloride is the hydrochloride salt form of cephalexin, a beta-lactam, first-generation cephalosporin antibiotic with bactericidal activity. Cephalexin hydrochloride binds to and inactivates penicillin-binding proteins (PBP) located on the inner membrane of the bacterial cell wall. PBPs participate in the terminal stages of assembling the bacterial cell wall, and in reshaping the cell wall during cell division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis.
A semisynthetic cephalosporin antibiotic with antimicrobial activity similar to that of CEPHALORIDINE or CEPHALOTHIN, but somewhat less potent. It is effective against both gram-positive and gram-negative organisms.
See also: Cephalexin (is salt form of).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H17N3O4S.CLH.H2O
Molecular Weight
347.3889
Exact Mass
401.081
Elemental Analysis
C, 47.82; H, 5.02; Cl, 8.82; N, 10.46; O, 19.91; S, 7.98
CAS #
105879-42-3
Related CAS #
Cephalexin;15686-71-2;Cephalexin hydrochloride;59695-59-9;Cephalexin monohydrate;23325-78-2;Cephalexin (lysine);53950-14-4
PubChem CID
62979
Appearance
Typically exists as solid at room temperature
Density
1.5g/cm3
Boiling Point
727.4ºC at 760mmHg
Flash Point
393.7ºC
Vapour Pressure
3.27E-22mmHg at 25°C
Index of Refraction
1.699
LogP
2.661
Hydrogen Bond Donor Count
5
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
4
Heavy Atom Count
26
Complexity
600
Defined Atom Stereocenter Count
3
SMILES
O.Cl.C1=CC=C([C@H](C(N[C@@H]2C(=O)N3C(=C(CS[C@H]23)C)C(=O)O)=O)N)C=C1
InChi Key
YHJDZIQOCSDIQU-OEDJVVDHSA-N
InChi Code
InChI=1S/C16H17N3O4S.ClH.H2O/c1-8-7-24-15-11(14(21)19(15)12(8)16(22)23)18-13(20)10(17)9-5-3-2-4-6-9;;/h2-6,10-11,15H,7,17H2,1H3,(H,18,20)(H,22,23);1H;1H2/t10-,11-,15-;;/m1../s1
Chemical Name
(6R,7R)-7-[[(2R)-2-amino-2-phenylacetyl]amino]-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid;hydrate;hydrochloride
Synonyms
Cephalexin hydrochloride; Keftab; Cephalexin HCl; 105879-42-3; Cefalexin hydrochloride; LY061188; UNII-6VJE5G3D98; 6VJE5G3D98;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8786 mL 14.3930 mL 28.7861 mL
5 mM 0.5757 mL 2.8786 mL 5.7572 mL
10 mM 0.2879 mL 1.4393 mL 2.8786 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
High-dose Cephalexin for Cellulitis (HI-DOCC)
CTID: NCT05852262
Phase: Phase 4
Status: Enrolling by invitation
Date: 2024-09-23
Effects of Treatments on Atopic Dermatitis
CTID: NCT01631617
Phase: Phase 2
Status: Recruiting
Date: 2024-09-20
Utility of Single-dose Oral Antibiotic Prophylaxis in Prevention of Surgical Site Infection in Dermatologic Surgery
CTID: NCT04580472
Phase: Phase 4
Status: Recruiting
Date: 2024-08-22
Patient-Directed Antimicrobial Duration in Acute Uncomplicated Pyelonephritis
CTID: NCT06127160
Phase: Phase 4
Status: Recruiting
Date: 2024-08-09
Antibiotic Prophylaxis in High-Risk Arthroplasty Patients
CTID: NCT04297592
Phase: Phase 4
Status: Enrolling by invitation
Date: 2024-06-27
Contact Us