yingweiwo

CAY10397

Alias: 78028-01-0; 5-[2-[4-(Ethoxycarbonyl)phenyl]diazenyl]-2-hydroxybenzeneacetic acid; 5-(2-(4-(Ethoxycarbonyl)phenyl)diazenyl)-2-hydroxybenzeneacetic acid; cay10397; CK47A; 2-[3-[(4-ethoxycarbonylphenyl)hydrazinylidene]-6-oxo-1-cyclohexa-1,4-dienyl]acetic Acid; 2-[5-[(4-ethoxycarbonylphenyl)diazenyl]-2-hydroxyphenyl]acetic acid; SCHEMBL10834750;
Cat No.:V17620 Purity: ≥98%
CAY10397 is a novel and potent inhibitor of 15-hydroxy PGDH
CAY10397
CAY10397 Chemical Structure CAS No.: 78028-01-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
CAY10397 is a novel and potent inhibitor of 15-hydroxy PGDH
Biological Activity I Assay Protocols (From Reference)
Targets
15-hydroxyprostaglandin dehydrogenase
ln Vitro
Inhibition of 15-PGDH by CAY10397 in LoVo and HCA-7 Cell Lysates [1]
In contrast to LoVo cells, the HCA-7 cell line is known to express COX-2 and only trace amounts of COX-1 and 15-PGDH. This was confirmed by Western blot analysis (data not shown). LoVo (Figure 6a) or HCA-7 (Figure 6b) cell lysates were incubated with 500 mM NAD+, with or without the 15-PGDH inhibitor, CAY10397 (50 μM), for 10 min. Inhibition of 15-PGDH significantly abolished the formation of endogenous 11-oxo-ETE (Figure 6a) by 92%, along with the diminished formation of 15-oxo-ETE as well as 13,14-dihydro-15-oxo-PGE2 (Figure 6a) in the LoVo cell lysate. However, since the oxo-ETEs and 13,14-dihydro-15-oxo-PGE2 were undetectable in HCA-7 cell lysate, their precursors were quantified instead, and CAY10397 had no effect on their levels (Figure 6b).

Inhibition of 15-PGDH enzyme by CAY10397 significantly diminished the formation of endogenous 11-oxo-ETE in LoVo cell lysates (Figure 6a). In addition, the formation of 15-oxo-ETE as well as 13,14-dihydro-15-oxo-PGE2, the other two 15-PGDH-dependent metabolites, was also significantly reduced in LoVo cell lysates treated with CAY10397 (Figure 6a). In contrast, the three 15-PGDH products, namely, 11- and 15-oxo-ETE and 13,14-dihydro-15-oxo-PGE2, were undetectable in HCA-7 cells as these cells do not express any 15-PGDH.10,28 Instead, the corresponding precursors for these three metabolites were observed in the lysates. Furthermore, treatment with CAY10397 had no effect on levels of 11(R)-HETE, 15(S)-HETE or PGE2 (Figure 6b).
Cell Assay
15-PGDH Inhibition in LoVo or HCA-7 Cell Lysates by CAY10397 [1]
LoVo or HCA-7 cells were grown to 90% confluence, washed with 10 mL of phosphate-buffered saline (PBS) buffer (2 times), and then gently scraped in 600 μL of lysis buffer containing 0.1 M Tris-HCl (pH 7.9) and the protease inhibitor. Cell suspension was transferred to 2 mL Eppendorf tubes and sonicated for 60 s on ice (power 5). Cell lysate was then incubated with or without the selective 15-PGDH inhibitor (CAY10397, 50 μM) and its cofactor (NAD+, 500 μM) for 10 min at 37 °C. The pH was then adjusted to 4 with 10% aqueous acetic acid (10 μL) followed by addition of the internal standard mix, [13C20]-15-oxo-ETE, [2H8]-15(S)-HETE and [2H4]-PGE2 (50 pg/μL, 20 μL). Diethyl ether (600 μL) was added, and samples were vortex-mixed and centrifuged (15000 rpm × 2 min). The organic layer was evaporated under nitrogen, and then the eicosanoids were derivatized with PFB bromide as mentioned above. Finally, samples were redissolved in hexane/ethanol (95:5; v/v, 100 μL) and analyzed (20 μL) by normal phase LC-ECAPCI/MS. The amounts of eicosanoids were normalized by protein concentrations of each lysate, which were determined by BCA assay.
References
[1]. 11-Oxoeicosatetraenoic acid is a cyclooxygenase-2/15-hydroxyprostaglandin dehydrogenase-derived antiproliferative eicosanoid. Chem Res Toxicol. 2011 Dec 19;24(12):2227-36.
Additional Infomation
CAY10397 is a member of the class of azobenzenes that is azobenzene in which one of the phenyl groups is substituted at position 4 by an ethoxycarbonyl group, while the other is substituted by a carboxymethyl group at position 3 and a hydroxy group at position 4. It is a potent and selective inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-hydroxy-PGDH). It has a role as an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor. It is a dicarboxylic acid monoester, an ethyl ester, a member of azobenzenes and a member of phenols.
Previously, we established that 11(R)-hydroxy-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (HETE) was a significant cyclooxygenase (COX)-2-derived arachidonic acid (AA) metabolite in epithelial cells. Stable isotope dilution chiral liquid chromatography (LC)-electron capture atmospheric pressure chemical ionization (ECAPCI)/mass spectrometry (MS) was used to quantify COX-2-derived eicosanoids in the human colorectal adenocarcinoma (LoVo) epithelial cell line, which expresses both COX-2 and 15-hydroxyprostaglandin dehydrogenase (15-PGDH). 11(R)-HETE secretion reached peak concentrations within minutes after AA addition before rapidly diminishing, suggesting further metabolism had occurred. Surprisingly, recombinant 15-PGDH, which is normally specific for oxidation of eicosanoid 15(S)-hydroxyl groups, was found to convert 11(R)-HETE to 11-oxo-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (ETE). Furthermore, LoVo cell lysates converted 11(R)-HETE to 11-oxo-ETE and inhibition of 15-PGDH with 5-[[4-(ethoxycarbonyl)phenyl]azo]-2-hydroxy-benzeneacetic acid (CAY10397) (50 μM) significantly suppressed endogenous 11-oxo-ETE production with a corresponding increase in 11(R)-HETE. These data confirmed COX-2 and 15-PGDH as enzymes responsible for 11-oxo-ETE biosynthesis. Finally, addition of AA to the LoVo cells resulted in rapid secretion of 11-oxo-ETE into the media, reaching peak levels within 20 min of starting the incubation. This was followed by a sharp decrease in 11-oxo-ETE levels. Glutathione (GSH) S-transferase (GST) was found to metabolize 11-oxo-ETE to the 11-oxo-ETE-GSH (OEG)-adduct in LoVo cells, as confirmed by LC–MS/MS analysis. Bromodeoxyuridine (BrdU)-based cell proliferation assays in human umbilical vein endothelial cells (HUVECs) revealed that the half-maximal inhibitory concentration (IC50) of 11-oxo-ETE for inhibition of HUVEC proliferation was 2.1 μM. These results show that 11-oxo-ETE is a novel COX-2/15-PGDH-derived eicosanoid, which inhibits endothelial cell proliferation with a potency that is similar to that observed for 15d-PGJ2. [1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
CH3*Y
Molecular Weight
103.94042
Exact Mass
328.105
Elemental Analysis
C, 62.19; H, 4.91; N, 8.53; O, 24.36
CAS #
78028-01-0
PubChem CID
2601
Appearance
Typically exists as solid at room temperature
Density
1.3±0.1 g/cm3
Boiling Point
578.0±50.0 °C at 760 mmHg
Flash Point
303.4±30.1 °C
Vapour Pressure
0.0±1.7 mmHg at 25°C
Index of Refraction
1.599
LogP
3.41
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
7
Heavy Atom Count
24
Complexity
460
Defined Atom Stereocenter Count
0
SMILES
CCCOC(=O)C1=CC=C(C=C1)N=NC2=CC=C(C(=C2)CC(=O)O)O
InChi Key
YYBSDOZYJSGLTH-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H16N2O5/c1-2-24-17(23)11-3-5-13(6-4-11)18-19-14-7-8-15(20)12(9-14)10-16(21)22/h3-9,20H,2,10H2,1H3,(H,21,22)
Chemical Name
2-[5-[(4-ethoxycarbonylphenyl)diazenyl]-2-hydroxyphenyl]acetic acid
Synonyms
78028-01-0; 5-[2-[4-(Ethoxycarbonyl)phenyl]diazenyl]-2-hydroxybenzeneacetic acid; 5-(2-(4-(Ethoxycarbonyl)phenyl)diazenyl)-2-hydroxybenzeneacetic acid; cay10397; CK47A; 2-[3-[(4-ethoxycarbonylphenyl)hydrazinylidene]-6-oxo-1-cyclohexa-1,4-dienyl]acetic Acid; 2-[5-[(4-ethoxycarbonylphenyl)diazenyl]-2-hydroxyphenyl]acetic acid; SCHEMBL10834750;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 9.6209 mL 48.1047 mL 96.2094 mL
5 mM 1.9242 mL 9.6209 mL 19.2419 mL
10 mM 0.9621 mL 4.8105 mL 9.6209 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us