Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
(1→3)-β-D-glucan synthase
|
---|---|
ln Vitro |
A sharp reduction of the metabolic activity of cells within the biofilm as assessed by the XTT reduction assay was demonstrated when preformed C. albicans 3153A biofilms were exposed to caspofungin (Fig.1). By this method, the 48-h MIC50 of caspofungin for sessile C. albicans 3153A cells within biofilms was 0.0625 μg/ml. Although complete sterility of biofilms was not achieved by treatment with caspofungin, the experiments showed a >97% reduction in the metabolic activity of sessile cells with caspofungin concentrations as low as 0.125 μg/ml. Caspofungin was also active against biofilms formed by all the C. albicans clinical isolates tested (n = 18), with MIC50s for sessile cells ranging between 0.0625 and 0.125 μg/ml, compared to fluconazole MIC50s for sessile cells of ≥64 μg/ml for all isolates. In agreement with the XTT assays, only residual metabolic activity was detected in cells within the caspofungin-treated biofilms, which showed a diffuse green fluorescence pattern characteristic of dead cells (Fig.3B). In confirmation of the SEM results, CLSM demonstrated that caspofungin treatment resulted in biofilms that were less hyphal and also showed minor distortions of the overall biofilm architecture. As shown in Fig.4, coating with caspofungin resulted in significant (up to 60%) reduction of the metabolic activity of adherent cells compared to that of cells in untreated (control) wells. Together these findings indicate that caspofungin displays potent activity against C. albicans biofilms in vitro and merits further investigation for the treatment of biofilm-associated infections. [3]
|
ln Vivo |
Caspofungin (1-8 mg/kg; i.p.; daily for 7 days) enters the central nervous system of mice and reaches concentrations that diminish Candida burden in the brain [1]. Caspofungin (0.41-41 μM; i.p.; 5 weeks; male C57BL/6 mice) is a safe antifungal drug with mouse vitreous concentrations ranging from 0.41 to 4.1 μM [2].
|
Enzyme Assay |
The echinocandin MK-0991, formerly L-743,872, is a water-soluble lipopeptide that has been demonstrated in preclinical studies to have potent activity against Candida spp., Aspergillus fumigatus, and Pneumocystis carinii. An extensive in vitro biological evaluation of MK-0991 was performed to better define the potential activities of this novel compound. Susceptibility testing with MK-0991 against approximately 200 clinical isolates of Candida, Cryptococcus neoformans, and Aspergillus isolates was conducted to determine MICs and minimum fungicidal concentrations MF(s). The MFC at which 90% of isolates are inhibited for 40 C. albicans clinical isolates was 0.5 microg/ml. Susceptibility testing with panels of antifungal agent-resistant species of Candida and C. neoformans isolates indicated that the MK-0991 MFCs for these isolates are comparable to those obtained for susceptible isolates. Growth kinetic studies of MK-0991 against Candida albicans and Candida tropicalis isolates showed that the compound exhibited fungicidal activity (i.e., a 99% reduction in viability) within 3 to 7 h at concentrations ranging from 0.06 to 1 microg/ml (0.25 to 4 times the MIC). Drug combination studies with MK-0991 plus amphotericin B found that this combination was not antagonistic against C. albicans, C. neoformans, or A. fumigatus in vitro. Studies with 0 to 50% pooled human or mouse serum established that fungal susceptibility to MK-0991 was not significantly influenced by the presence of human or mouse serum. Results from resistance induction studies suggested that the susceptibility of C. albicans was not altered by repeated exposure (40 passages) to MK-0991. Erythrocyte hemolysis studies with MK-0991 with washed and unwashed human or mouse erythrocytes indicated minimal hemolytic potential with this compound. These favorable results of preclinical studies support further studies with MK-0991 with humans.[4]
|
Cell Assay |
Effect of coating the wells of a microtiter plate with caspofungin on C. albicans biofilm formation. A modified assay was used in which the wells of a microtiter plate were directly precoated with caspofungin in order to investigate the drug's ability to prevent biofilm formation. Briefly, 200-μl volumes of caspofungin at different concentrations in sterile PBS were added to selected wells of a microtiter plate and incubated overnight at 4°C. After incubation, excess caspofungin was aspirated and the plates were washed once in sterile PBS. C. albicans 3153A cells were washed in PBS and resuspended at a concentration of 106 cells per ml in RPMI 1640. The 96-well microtiter plates were then seeded with the suspension (100 μl per well) and incubated for 24 h at 37°C to allow biofilm formation. The contents of the wells were aspirated and washed three times in sterile PBS, and the extent of biofilm formation was assessed by the XTT reduction assay and by light microscopy. The inhibitory effect of caspofungin was expressed as the percentage of the optical density (OD) of caspofungin-treated wells compared to that of control (plastic) wells for the XTT assays. Statistical analysis was performed with Student's t test. P values of <0.05 were considered statistically significant. The analyses were performed by using Prism version 3.00 for Window.[3]
|
Animal Protocol |
Animal/Disease Models: DBA/2N mice deficient in complement component 5 [1]
Doses: 1, 2, 4 and 8 mg/kg Route of Administration: intraperitoneal (ip) injection; one time/day for 7 days Experimental Results: diminished concentration of Candida load in the brain. Animal/Disease Models: Male C57BL/6 mice [2] Doses: 0.41, 1.2, 2.5, 4.1 and 41 μM Route of Administration: intraperitoneal (ip) injection; continued for 5 weeks Experimental Results: ERG waveform changed from 0.41 μM to 4.1 μM, no significant change . |
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
92% tissue distribution within 36-48 hours after intravenous infusion After single intravenous administration of [3H] caspofungin acetate, excretion of caspofungin and its metabolites in humans was 35% of dose in feces and 41% of dose in urine. 12 mL/min [After single IV administration] Elimination: Fecal: 35% as drug or metabolites. Renal: 41% as drug (approximately 1.4% unchanged) or metabolites. In dialysis: Not removed by hemodialysis. Following administration of a single 70 mg irradiated dose, approximately 92% of the administered radioactivity was distributed into tissues within 36 to 48 hours. Distribution into red blood cells in minimal. Caspofungin crosses the placenta in rats and rabbits and was detected in the plasma of fetuses of pregnant animals who were dosed with caspofungin. Caspofungin is distributed into milk in rats; not known whether caspofungin is distributed into milk in humans. For more Absorption, Distribution and Excretion (Complete) data for CASPOFUNGIN (13 total), please visit the HSDB record page. Metabolism / Metabolites Metabolized slowly by hydrolysis and N-acetylation Slowly metabolized by hydrolysis and N-acetylation; also undergoes spontaneous chemical degradation and further hydrolysis to constitutive amino acids and their degredates, including dihydroxyhomotyrosine and N-acetyl-dihydroxyhomotyrosine. Caspofungin is slowly metabolized in the liver via hydrolysis and N-acetylation; 35 and 41% of the parent drug and metabolites were excreted in feces and urine, respectively, following a single IV radiolabeled dose. The metabolism, excretion, and pharmacokinetics of caspofungin were investigated after administration of a single intravenous dose to mice, rats, rabbits, and monkeys. ... Excretion of radioactivity in all species studied was slow, and low levels of radioactivity were detected in daily urine and fecal samples throughout a prolonged collection period. Although urinary profiles indicated the presence of several metabolites (M0, M1, M2, M3, M4, M5, and M6), the majority of the total radioactivity was associated with the polar metabolites M1 [4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine] and M2 (N-acetyl-4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine). Caspofungin was thus primarily eliminated by metabolic transformation; however, the rate of metabolism was slow. ... Caspofungin is slowly metabolized by hydrolysis and N-acetylation. Caspofungin also undergoes spontaneous chemical degradation to an open-ring peptide compound, L-747969. At later time points (> or = 5 days postdose), there is a low level (< or = 7 picomoles/mg protein, or < or = 1.3% of administered dose) of covalent binding of radiolabel in plasma following single-dose administration of (3)H caspofungin acetate, which may be due to two reactive intermediates formed during the chemical degradation of caspofungin to L-747969. Additional metabolism involves hydrolysis into constitutive amino acids and their degradates, including dihydroxyhomotyrosine and N-acetyl-dihydroxyhomotyrosine. These two tyrosine derivatives are found only in urine, suggesting rapid clearance of these derivatives by the kidneys. /Caspofungin acetate/ ... Following a 1 hr IV infusion of 70 mg of (3)HCaspofungin acetate to healthy subjects, excretion of drug-related material was very slow, such that 41 and 35% of the dosed radioactivity was recovered in urine and feces, respectively, over 27 days. Plasma and urine samples collected around 24 hr postdose contained predominantly unchanged caspofungin acetate, together with trace amounts of a peptide hydrolysis product, M0, a linear peptide. However, at later sampling times, M0 proved to be the major circulating component, whereas corresponding urine specimens contained mainly the hydrolytic metabolites M1 and M2, together with M0 and unchanged MK-0991, whose cumulative urinary excretion over the first 16 days postdose represented 13, 71, 1, and 9%, respectively, of the urinary radioactivity. The major metabolite, M2, was highly polar and extremely unstable under acidic conditions when it was converted to a less polar product identified as N-acetyl-4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine gamma-lactone. Derivatization of M2 in aqueous media led to its identification as the corresponding gamma-hydroxy acid, N-acetyl-4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine. Metabolite M1, which was extremely polar, eluting from HPLC column just after the void volume, was identified by chemical derivatization as des-acetyl-M2. Thus, the major urinary and plasma metabolites of MK-0991 resulted from peptide hydrolysis and/or N-acetylation. /Caspofungin acetate/ Biological Half-Life 9-11 hours Initial: 9 TO 11 hours (beta phase). Additional: 40 to 50 hours (gamma phase). After administration of a single intravenous dose to mice, rats, rabbits, and monkeys, caspofungin had a ... long terminal elimination half-life (11.7 hr to 59.7 hr) in all preclinical species. |
Toxicity/Toxicokinetics |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation No information is available on the use of caspofungin during breastfeeding. Because caspofungin is 97% bound to plasma proteins and has poor oral bioavailability, it is unlikely to reach the milk and be absorbed by the infant. Caspofungin can safely be given intravenously to infants of aged 3 months or older. Any amount absorbed from milk is likely to be far less than an infant dose. If caspofungin is required by the mother, it is not a reason to discontinue breastfeeding. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding 97% Interactions ... In this study the efficacies of caspofungin and meropenem - separately and together - in mice with disseminated candidiasis were studied. Immunocompetent mice were infected intravenously with 2x10(6) CFU of Candida albicans. At 24 hr postinfection, intraperitoneal therapy was initiated and was continued for 7 days. Therapy groups included those given caspofungin (0.5, 1.25, 5 mg/kg/day), meropenem (20 mg/kg/day), and a combination of the two drugs. ... Kidney CFU counts showed that mice that had received both drugs had lower residual burdens. Caspofungin was effective at doses of 0.5, 1.25, 5 mg/kg compared to infected untreated controls. In vitro, MICs of caspofungin and meropenem were <0.075 ug/mL and >64 ug/mL, respectively. Synergism was observed with the combination. Histopathology showed that the degree of inflammation was 25% less and tubular necrosis was more restricted in combined therapy than monotherapy. The results indicate that concurrent caspofungin and meropenem therapy may be beneficial. Concomitant use /with tacrolimus/ may result in decreased tacrolimus blood concentrations; monitoring of tacrolimus concentrations is recommended, and dosage adjustments may be required. Potential pharmacokinetic interaction (reduction in caspofungin plasma concentrations.). Coadministration of caspofungin with inducers or mixed inducer/inhibitors of drug clearance such as efavirenz, nelfinavir, nevirapine, phenytoin, rifampin, dexamethasone, or carbamazepine may result in clinically important reductions in plasma caspofungin concentrations. ... The potential for interactions between caspofungin and nelfinavir or rifampin was evaluated in two parallel-panel studies. In study A, healthy subjects received a 14-day course of caspofungin alone (50 mg administered intravenously [IV] once daily) (n = 10) or with nelfinavir (1,250 mg administered orally twice daily) (n = 9) or rifampin (600 mg administered orally once daily) (n = 10). In study B, 14 subjects received a 28-day course of rifampin (600 mg administered orally once daily), with caspofungin (50 mg administered IV once daily) coadministered on the last 14 days, and 12 subjects received a 14-day course of caspofungin alone (50 mg administered IV once daily). The coadministration/administration alone geometric mean ratio for the caspofungin area under the time-concentration profile calculated for the 24-hr period following dosing [AUC(0-24)] was as follows (values in parentheses are 90% confidence intervals [CIs]): 1.08 (0.93-1.26) for nelfinavir, 1.12 (0.97-1.30) for rifampin (study A), and 1.01 (0.91-1.11) for rifampin (study B). The shape of the caspofungin plasma profile was altered by rifampin, resulting in a 14 to 31% reduction in the trough concentration at 24 hr after dosing (C(24h)), consistent with a net induction effect at steady state. Both the AUC and the C(24hr) were elevated in the initial days of rifampin coadministration in study A (61 and 170% elevations, respectively, on day 1) but not in study B, consistent with transient net inhibition prior to full induction. The coadministration/administration alone geometric mean ratio for the rifampin AUC(0-24) on day 14 was 1.07 (90% CI, 0.83-1.38). Nelfinavir does not meaningfully alter caspofungin pharmacokinetics. Rifampin both inhibits and induces caspofungin disposition, resulting in a reduced C(24hr) at steady state. An increase in the caspofungin dose to 70 mg, administered daily, should be considered when the drug is coadministered with rifampin. For more Interactions (Complete) data for CASPOFUNGIN (9 total), please visit the HSDB record page. |
References |
[1]. Flattery AM, et, al. Efficacy of caspofungin in a juvenile mouse model of central nervous system candidiasis. Antimicrob Agents Chemother. 2011 Jul;55(7):3491-7.
[2]. Mojumder DK, et, al. Evaluating retinal toxicity of intravitreal caspofungin in the mouse eye. Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5796-803. [3]. Antimicrob Agents Chemother. 2002 Nov; 46(11): 3591–3596. [4]. Antimicrob Agents Chemother.1997 Nov;41(11):2326-32 |
Additional Infomation |
Caspofungin (brand name Cancidas worldwide) is an antifungal drug and the first member of a new drug class called the echinocandins, as coined by Merck & Co., Inc. It is typically administered intravenously. It shows activity against infections with Aspergillus and Candida, and works by inhibiting β(1,3)-D-Glucan of the fungal cell wall.
Caspofungin is an antimycotic echinocandin lipopeptide, semisynthetically derived from a fermentation product of the fungus Glarea lozoyensis. Caspofungin inhibits 1,3-beta-glucan synthase, resulting in decreased synthesis of beta(1,3)-D-glucan (an essential component of the fungal cell wall), weakening of the fungal cell wall, and fungal cell wall rupture. This agent is active against Aspergillus and Candida species. A cyclic lipopeptide echinocandin and beta-(1,3)-D-glucan synthase inhibitor that is used to treat internal or systemic MYCOSES. See also: Caspofungin (annotation moved to). Drug Indication For the treatment of esophageal candidiasis and invasive aspergillosis in patients who are refractory to or intolerant of other therapies. FDA Label Treatment of invasive candidiasis in adult or paediatric patients; treatment of invasive aspergillosis in adult or paediatric patients who are refractory to or intolerant of amphotericin B, lipid formulations of amphotericin B and / or itraconazole. Refractoriness is defined as progression of infection or failure to improve after a minimum of seven days of prior therapeutic doses of effective antifungal therapy; empirical therapy for presumed fungal infections (such as Candida or Aspergillus) in febrile, neutropaenic adult or paediatric patients. Treatment of invasive candidiasis in adult or paediatric patients. Treatment of invasive aspergillosis in adult or paediatric patients who are refractory to or intolerant of amphotericin B, lipid formulations of amphotericin B and/or itraconazole. Refractoriness is defined as progression of infection or failure to improve after a minimum of 7 days of prior therapeutic doses of effective antifungal therapy. Empirical therapy for presumed fungal infections (such as Candida or Aspergillus) in febrile, neutropaenic adult or paediatric patients. Mechanism of Action Caspofungin inhibits the synthesis of beta-(1,3)-D-glucan, an essential component of the cell wall of Aspergillus species and Candida species. beta-(1,3)-D-glucan is not present in mammalian cells. The primary target is beta-(1,3)-glucan synthase. Caspofungin inhibits the synthesis of beta(1,3)-d-glucan, an integral component of the fungal cell wall that is not present in mammalian cells. Caspofungin acetate ... /belongs to a class of drugs/ referred to as echinocandins, which inhibit the formation of beta(1,3)-D-glucans in the fungal cell wall. Resistance is conferred by mutations in the FKS1 gene, which codes for a large subunit of (1,3)beta-glucan synthase. /Caspofungin acetate/ Caspofungin acetate, the active ingredient of cancidas, inhibits the synthesis of alpha(1,3)-D-glucan, an essential component of the cell wall of susceptible Aspergillus species and Candida species. (1,3)-D-glucan is not present in mammalian cells. Caspofungin has shown activity against Candida species and in regions of active cell growth of the hyphae of Aspergillus fumigatus. /Caspofungin acetate/ Therapeutic Uses Caspofungin is indicated for the empirical therapy for presumed fungal infections in febrile, neutropenic patients. /Included in US product labeling/ Caspofungin is indicated for the treatment of candidemia and the following Candidiasis infections: esophageal, intra-abdominal and abscesses, peritonitis, and plural space infections. /Included in US product labeling/ Caspofungin is indicated in the tretment of invasive aspergillosis in patients who are refractory t or intolerant of other therapies, including amphotericin B (lipid and non-lipid formulations) and/or itraconazole. /Included in US product labeling/ /Expl Ther/ ... Azole-resistant isolates of Candida albicans remain susceptible to caspofungin ... /Caspofungin acetate/ is active in experimental animal infection with C. albicans, Aspergillus fumigatus, Pneumocystis carinii, and Histoplasma capsulatum. Clinical trials are in progress with iv formulations of caspofungin ... in patients with deep candidiasis, and with neutropenia and fever not responding to antibacterial therapy. /Caspofungin acetate/ For more Therapeutic Uses (Complete) data for CASPOFUNGIN (8 total), please visit the HSDB record page. Drug Warnings Adverse effects occurring in 2% or more of patients with invasive aspergillosis receiving caspofungin acetate in an open-label, noncomparative clinical study include fever, infused vein complications, nausea, vomiting, or flushing. Fever, phlebitis/thrombophlebitis, infused vein complication, headache, nausea, pain (unspecified), rash, anemia, abdominal pain, diarrhea, vomiting, facial edema, flu-like illness, myalgia, paresthesia, induration, chills, and pruritus reported in clinical studies for uses other than aspergillosis. The following postmarketing adverse events have been reported: Hepatobiliary: rare cases of clinically significant hepatic dysfunction Cardiovascular: swelling and peripheral edema Metabolic: hypercalcemia Possible histamine-mediated symptoms have been reported including reports of rash, facial swelling, pruritus, sensation of warmth, or bronchospasm. Anaphylaxis has been reported during administration of CANCIDAS. Caspofungin is distributed into milk in rats; not known whether caspofungin is distributed into milk in humans. Caution should be exercised if caspofungin is used in nursing women. For more Drug Warnings (Complete) data for CASPOFUNGIN (6 total), please visit the HSDB record page. Pharmacodynamics Caspofungin is an antifungal drug, and belongs to a new class termed the echinocandins. It is used to treat Aspergillus and Candida infection, and works by inhibiting cell wall synthesis. Antifungals in the echinocandin class inhibit the synthesis of glucan in the cell wall, probably via the enzyme 1,3-beta glucan synthase. There is a potential for resistance development to occur, however in vitro resistance development to Caspofungin by Aspergillus species has not been studied. |
Molecular Formula |
C52H88N10O15
|
---|---|
Molecular Weight |
1093.31
|
Exact Mass |
1091.65
|
Elemental Analysis |
C, 57.13; H, 8.11; N, 12.81; O, 21.95
|
CAS # |
162808-62-0
|
Related CAS # |
Caspofungin diacetate;179463-17-3;Caspofungin-d4;1131958-73-0; 162808-62-0
|
PubChem CID |
2826718
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.36g/cm3
|
Boiling Point |
1408.1ºC at 760mmHg
|
Flash Point |
805.4ºC
|
Vapour Pressure |
0mmHg at 25°C
|
Index of Refraction |
1.623
|
LogP |
0.761
|
Hydrogen Bond Donor Count |
16
|
Hydrogen Bond Acceptor Count |
18
|
Rotatable Bond Count |
23
|
Heavy Atom Count |
77
|
Complexity |
1900
|
Defined Atom Stereocenter Count |
14
|
SMILES |
CCC(CC(CCCCCCCCC(NC1CC(O)C(NC(C2C(O)CCN2C(C(NC(C(NC(C3CC(O)CN3C(C(NC1=O)C(O)C)=O)=O)C(O)C(O)C4=CC=C(O)C=C4)=O)C(O)CCN)=O)=O)NCCN)=O)C)C
|
InChi Key |
JYIKNQVWKBUSNH-WVDDFWQHSA-N
|
InChi Code |
InChI=1S/C52H88N10O15/c1-5-28(2)24-29(3)12-10-8-6-7-9-11-13-39(69)56-34-26-38(68)46(55-22-21-54)60-50(75)43-37(67)19-23-61(43)52(77)41(36(66)18-20-53)58-49(74)42(45(71)44(70)31-14-16-32(64)17-15-31)59-48(73)35-25-33(65)27-62(35)51(76)40(30(4)63)57-47(34)72/h14-17,28-30,33-38,40-46,55,63-68,70-71H,5-13,18-27,53-54H2,1-4H3,(H,56,69)(H,57,72)(H,58,74)(H,59,73)(H,60,75)/t28-,29+,30+,33+,34-,35-,36+,37-,38+,40-,41-,42-,43-,44-,45-,46-/m0/s1
|
Chemical Name |
(10R,12S)-N-((2R,6S,9S,11R,12S,14aS,15S,20S,23S,25aS)-20-((R)-3-amino-1-hydroxypropyl)-12-((2-aminoethyl)amino)-23-((1S,2S)-1,2-dihydroxy-2-(4-hydroxyphenyl)ethyl)-2,11,15-trihydroxy-6-((R)-1-hydroxyethyl)-5,8,14,19,22,25-hexaoxotetracosahydro-1H-dipyrrolo[2,1-c:2',1'-l][1,4,7,10,13,16]hexaazacyclohenicosin-9-yl)-10,12-dimethyltetradecanamide
|
Synonyms |
L 743872; MK0991; L743872; MK 0991; L-743872; MK-0991
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.9147 mL | 4.5733 mL | 9.1465 mL | |
5 mM | 0.1829 mL | 0.9147 mL | 1.8293 mL | |
10 mM | 0.0915 mL | 0.4573 mL | 0.9147 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
Study of Rezafungin Compared to Caspofungin in Subjects With Candidemia and/or Invasive Candidiasis
CTID: NCT03667690
Phase: Phase 3   Status: Completed
Date: 2023-01-06