yingweiwo

Bromocriptine (Parlodel)

Alias: CB154 CB 154 Bromocriptine CB-154
Cat No.:V17085 Purity: ≥98%
Bromocriptine (Parlodel) is a semisynthetic ergotamine alkaloid that acts as a dopamine D2 agonist.
Bromocriptine (Parlodel)
Bromocriptine (Parlodel) Chemical Structure CAS No.: 25614-03-3
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Bromocriptine (Parlodel):

  • Bromocriptine Mesylate (CB-154)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Bromocriptine (Parlodel) is a semisynthetic ergotamine alkaloid that acts as a dopamine D2 agonist. It suppresses prolactin secretion. It is used in the treatment of pituitary tumors, Parkinson's disease (PD), hyperprolactinaemia, neuroleptic malignant syndrome, and type 2 diabetes.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
In CHO cells, bromocriptine increases the expression of D2 dopamine receptors, which then bind to [35S]-GTPγS with a pEC50 of 8.15±0.05[1]. Another potent inhibitor of brain nitric oxide synthase is bromocriptine. It was shown that the ergot alkaloid bromocriptine (BKT) had weak effect against inducible macrophage NOS (IC50>100 μM), but it was a potent inhibitor of pure neuronal nitric oxide synthase (NOS) (IC50=10±2 μM) [2]. It has been discovered that at least one human cytochrome P450 enzyme is inhibited by bromocriptine. Strong CYP3A4 inhibitor bromocriptine has an interaction IC50 value of 1.69 μM [3].
ln Vivo
When compared to the control group, the group administered with 2 mg/kg intraperitoneal injections of bromocriptine, a dopamine agonist, demonstrated a noteworthy anti-immobility effect. When bromocriptine was given 30 minutes after the last dose of the 7-day MPE therapy and an FST was conducted, the anti-immobility effects of this dopaminergic agonist on MPE (200 mg/kg, orally) were shown to be significantly and dose-dependently enhanced when compared with MPE treatment alone. When compared to the control group, the group treated with 2 mg/kg of the dopamine agonist bromocriptine intraperitoneally (i.p.) exhibited a substantial decrease in immobility time. When bromocriptine (100 and 200 mg/kg, po) was administered following 7 days of pretreatment with MPE, the anti-immobility effect of MPE was significantly and dose-dependently enhanced when compared to MPE treatment alone [4]. When bromocriptine was administered intraperitoneally, the CCI-IoN group saw a significant, dose-dependent (0.1 mg and 1 mg/Kg) reduction in pain scores when compared to the sham group. This effect persisted for six hours. Scores decreased most when the highest dose was applied (P<0.01). The DR1 agonist SKF8129 was employed as a positive control. Comparing intraperitoneal delivery to sham surgery (saline injection), there was a nonsignificant rise in SMA scores. When bromocriptine was administered intracervically, the SMA scores were much lower than when saline injection was used as a sham procedure. Bromocriptine has a 20-minute half-life. as bromocriptine was administered intraperitoneally, the SMA scores of the CCI-IoN α + α 6-OHDA damage group significantly decreased in a dose-dependent manner as compared to the sham group. Six hours pass during its impact. Administration of SKF81297 resulted in higher allodynia scores. When compared to sham surgery (rats injected with normal saline), intraacisternal infusion of bromocriptine dramatically reduced SMA scores, and its effects lasted for 30 minutes [5].
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Approximately 28% of the oral dose is absorbed; however due to a substantial first pass effect, only 6% of the oral dose reaches the systemic circulation unchanged. Bromocriptine and its metabolites appear in the blood as early as 10 minutes following oral administration and peak plasma concentration are reached within 1-1.5 hours. Serum prolactin may be decreased within 2 hours or oral administration with a maximal effect achieved after 8 hours. Growth hormone concentrations in patients with acromegaly is reduced within 1-2 hours with a single oral dose of 2.5 mg and decreased growth hormone concentrations persist for at least 4-5 hours.
Parent drug and metabolites are almost completely excreted via the liver, and only 6% eliminated via the kidney.
Metabolism / Metabolites
Completely metabolized by the liver, primarily by hydrolysis of the amide bond to produce lysergic acid and a peptide fragment, both inactive and non-toxic. Bromocriptine is metabolized by cytochrome P450 3A4 and excreted primarily in the feces via biliary secretion.
Bromocriptine has known human metabolites that include 5-bromo-N-[2,10-dihydroxy-7-(2-methylpropyl)-5,8-dioxo-4-propan-2-yl-3-oxa-6,9-diazatricyclo[7.3.0.02,6]dodecan-4-yl]-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide and 5-bromo-N-[2,11-dihydroxy-7-(2-methylpropyl)-5,8-dioxo-4-propan-2-yl-3-oxa-6,9-diazatricyclo[7.3.0.02,6]dodecan-4-yl]-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide.
Completely metabolized by the liver, primarily by hydrolysis of the amide bond to produce lysergic acid and a peptide fragment, both inactive and non-toxic. Bromocriptine is metabolized by cytochrome P450 3A4 and excreted primarily in the feces via biliary secretion.
Route of Elimination: Parent drug and metabolites are almost completely excreted via the liver, and only 6% eliminated via the kidney.
Half Life: 2-8 hours
Biological Half-Life
2-8 hours
Toxicity/Toxicokinetics
Toxicity Summary
The dopamine D2 receptor is a 7-transmembrane G-protein coupled receptor associated with Gi proteins. In lactotrophs, stimulation of dopamine D2 receptor causes inhibition of adenylyl cyclase, which decreases intracellular cAMP concentrations and blocks IP3-dependent release of Ca2+ from intracellular stores. Decreases in intracellular calcium levels may also be brought about via inhibition of calcium influx through voltage-gated calcium channels, rather than via inhibition of adenylyl cyclase. Additionally, receptor activation blocks phosphorylation of p42/p44 MAPK and decreases MAPK/ERK kinase phosphorylation. Inhibition of MAPK appears to be mediated by c-Raf and B-Raf-dependent inhibition of MAPK/ERK kinase. Dopamine-stimulated growth hormone release from the pituitary gland is mediated by a decrease in intracellular calcium influx through voltage-gated calcium channels rather than via adenylyl cyclase inhibition. Stimulation of dopamine D2 receptors in the nigrostriatal pathway leads to improvements in coordinated muscle activity in those with movement disorders.

Ergoline alkaloids have been shown to have the significant affinity towards the 5-HT1 and 5-HT2 serotonin receptors, D1 and D2 dopamine receptors, and alpha-adrenergic receptors. This can result in a number of different effects, including vasoconstriction, convulsions, and hallucinations. Bromocriptine acts by directly stimulating the dopamine receptors in the corpus striatum. (A2914, A2915, A2916, A2941)
References
[1]. Gardner B, et al. Agonist action at D2(long) dopamine receptors: ligand binding and functional assays. Br J Pharmacol. 1998 Jul;124(5):978-84.
[2]. Renodon A, et al. Bromocriptine is a strong inhibitor of brain nitric oxide synthase: possible consequences for the origin of its therapeutic effects.FEBS Lett. 1997 Apr 7;406(1-2):33-6.
[3]. Wynalda MA, et al. Assessment of potential interactions between dopamine receptor agonists and various human cytochrome P450 enzymes using a simple in vitro inhibition screen. Drug Metab Dispos. 1997 Oct;25(10):1211-4.
[4]. Rana DG, et al. Dopamine mediated antidepressant effect of Mucuna pruriens seeds in various experimental models of depression. Ayu. 2014 Jan;35(1):90-7.
[5]. Dieb W, et al. Nigrostriatal dopaminergic depletion increases static orofacial allodynia. J Headache Pain. 2016;17:11
Additional Infomation
Pharmacodynamics
Bromocriptine stimulates centrally-located dopaminergic receptors resulting in a number of pharmacologic effects. Five dopamine receptor types from two dopaminergic subfamilies have been identified. The dopaminergic D1 receptor subfamily consists of D1 and D5 subreceptors, which are associated with dyskinesias. The dopaminergic D2 receptor subfamily consists of D2, D3 and D4 subreceptors, which are associated with improvement of symptoms of movement disorders. Thus, agonist activity specific for D2 subfamily receptors, primarily D2 and D3 receptor subtypes, are the primary targets of dopaminergic antiparkinsonian agents. It is thought that postsynaptic D2 stimulation is primarily responsible for the antiparkinsonian effect of dopamine agonists, while presynaptic D2 stimulation confers neuroprotective effects. This semisynthetic ergot derivative exhibits potent agonist activity on dopamine D2-receptors. It also exhibits agonist activity (in order of decreasing binding affinity) on 5-hydroxytryptamine (5-HT)1D, dopamine D3, 5-HT1A, 5-HT2A, 5-HT1B, and 5-HT2C receptors, antagonist activity on α2A-adrenergic, α2C, α2B, and dopamine D1 receptors, partial agonist activity at receptor 5-HT2B, and inactivates dopamine D4 and 5-HT7 receptors. Parkinsonian Syndrome manifests when approximately 80% of dopaminergic activity in the nigrostriatal pathway of the brain is lost. As this striatum is involved in modulating the intensity of coordinated muscle activity (e.g. movement, balance, walking), loss of activity may result in dystonia (acute muscle contraction), Parkinsonism (including symptoms of bradykinesia, tremor, rigidity, and flattened affect), akathesia (inner restlessness), tardive dyskinesia (involuntary muscle movements usually associated with long-term loss of dopaminergic activity), and neuroleptic malignant syndrome, which manifests when complete blockage of nigrostriatal dopamine occurs. High dopaminergic activity in the mesolimbic pathway of the brain causes hallucinations and delusions; these side effects of dopamine agonists are manifestations seen in patients with schizophrenia who have overractivity in this area of the brain. The hallucinogenic side effects of dopamine agonists may also be due to 5-HT2A agonism. The tuberoinfundibular pathway of the brain originates in the hypothalamus and terminates in the pituitary gland. In this pathway, dopamine inhibits lactotrophs in anterior pituitary from secreting prolactin. Increased dopaminergic activity in the tuberoinfundibular pathway inhibits prolactin secretion making bromocriptine an effective agent for treating disorders associated with hypersecretion of prolactin. Pulmonary fibrosis may be associated bromocriptine’s agonist activity at 5-HT1B and 5-HT2B receptors.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C32H40BRN5O5
Molecular Weight
654.606
Exact Mass
653.221
CAS #
25614-03-3
Related CAS #
Bromocriptine mesylate;22260-51-1
PubChem CID
31101
Appearance
Typically exists as solid at room temperature
Density
1.52 g/cm3
Boiling Point
891.3ºC at 760 mmHg
Melting Point
215-218
Flash Point
492.8ºC
Vapour Pressure
4.15E-34mmHg at 25°C
Index of Refraction
1.696
LogP
3.397
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
5
Heavy Atom Count
43
Complexity
1230
Defined Atom Stereocenter Count
6
SMILES
CC(C[C@H]1C(N2CCC[C@H]2[C@@]3(O)N1C([C@](NC([C@@H]4C=C5C6=C7C(C[C@H]5N(C4)C)=C(NC7=CC=C6)Br)=O)(O3)C(C)C)=O)=O)C
InChi Key
OZVBMTJYIDMWIL-AYFBDAFISA-N
InChi Code
InChI=1S/C32H40BrN5O5/c1-16(2)12-24-29(40)37-11-7-10-25(37)32(42)38(24)30(41)31(43-32,17(3)4)35-28(39)18-13-20-19-8-6-9-22-26(19)21(27(33)34-22)14-23(20)36(5)15-18/h6,8-9,13,16-18,23-25,34,42H,7,10-12,14-15H2,1-5H3,(H,35,39)/t18-,23-,24+,25+,31-,32+/m1/s1
Chemical Name
Ergotaman-3',6',18-trione, 2-bromo-12'-hydroxy-2'-(1-methylethyl)-5'-(2-methylpropyl)-, (5'alpha)-
Synonyms
CB154 CB 154 Bromocriptine CB-154
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.5276 mL 7.6381 mL 15.2763 mL
5 mM 0.3055 mL 1.5276 mL 3.0553 mL
10 mM 0.1528 mL 0.7638 mL 1.5276 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us