Size | Price | Stock | Qty |
---|---|---|---|
25mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
Bilirubin Conjugate disodium is a ditaurate derivative of Bilirubin. Bilirubin is a major end product of heme breakdown and an important constituent of bile.
Targets |
Heme breakdown product
|
---|---|
ln Vitro |
Bilirubin, a major end product of heme breakdown, is an important constituent of bile, responsible for its characteristic colour. Over recent decades, our understanding of bilirubin metabolism has expanded along with the processes of elimination of other endogenous and exogenous anionic substrates, mediated by the action of multiple transport systems at the sinusoidal and canalicular membrane of hepatocytes. Several inherited disorders characterised by impaired bilirubin conjugation (Crigler-Najjar syndrome type I and type II, Gilbert syndrome) or transport (Dubin-Johnson and Rotor syndrome) result in various degrees of hyperbilirubinemia of either the predominantly unconjugated or predominantly conjugated type. Moreover, disrupted regulation of hepatobiliary transport systems can explain jaundice in many acquired liver disorders. In this review, we discuss the recent data on liver bilirubin handling based on the discovery of the molecular basis of Rotor syndrome. The data show that a substantial fraction of bilirubin conjugates is primarily secreted by MRP3 at the sinusoidal membrane into the blood, from where they are subsequently reuptaken by sinusoidal membrane-bound organic anion transporting polypeptides OATP1B1 and OATP1B3. OATP1B proteins are also responsible for liver clearance of bilirubin conjugated in splanchnic organs, such as the intestine and kidney, and for a number of endogenous compounds, xenobiotics and drugs. Absence of one or both OATP1B proteins thus may have serious impact on toxicity of commonly used drugs cleared by this system such as statins, sartans, methotrexate or rifampicin. The liver-blood cycling of conjugated bilirubin is impaired in cholestatic and parenchymal liver diseases and this impairment most likely contributes to jaundice accompanying these disorders. [1]
|
References | |
Additional Infomation |
Over the last decades, molecular basis of hyperbilirubinemia syndromes has been elucidated and mutations affecting the basolateral and apical membrane transporters responsible for accumulation of either conjugated or unconjugated bilirubin have been identified.[1]
|
Molecular Formula |
C37H44N6O10S2-2.2[NA+]
|
---|---|
Molecular Weight |
842.88906
|
Exact Mass |
842.236
|
CAS # |
68683-34-1
|
PubChem CID |
16414149
|
Appearance |
Orange to red solid powder
|
LogP |
5.843
|
Hydrogen Bond Donor Count |
6
|
Hydrogen Bond Acceptor Count |
10
|
Rotatable Bond Count |
16
|
Heavy Atom Count |
57
|
Complexity |
1880
|
Defined Atom Stereocenter Count |
0
|
SMILES |
C=CC\1=C(C(N/C1=C/C2=C(C(CCC([O-])=NCCS(=O)(O)=O)=C(N2)CC3=C(C(C)=C(N3)/C=C/4\C(C)=C(C(N4)=O)C=C)CCC([O-])=NCCS(=O)(O)=O)C)=O)C.[Na+].[Na+]
|
InChi Key |
IQKDYMAMJBFOQJ-KPUSBRQXSA-L
|
InChi Code |
InChI=1S/C37H46N6O10S2.2Na/c1-7-24-23(6)36(46)43-31(24)18-29-22(5)27(10-12-35(45)39-14-16-55(51,52)53)33(41-29)19-32-26(9-11-34(44)38-13-15-54(48,49)50)21(4)28(40-32)17-30-20(3)25(8-2)37(47)42-30;;/h7-8,17-18,40-41H,1-2,9-16,19H2,3-6H3,(H,38,44)(H,39,45)(H,42,47)(H,43,46)(H,48,49,50)(H,51,52,53);;/q;2*+1/p-2/b30-17+,31-18+;;
|
Chemical Name |
disodium;2-[3-[5-[(E)-(4-ethenyl-3-methyl-5-oxopyrrol-2-ylidene)methyl]-2-[[5-[(E)-(3-ethenyl-4-methyl-5-oxopyrrol-2-ylidene)methyl]-4-methyl-3-[3-oxo-3-(2-sulfonatoethylamino)propyl]-1H-pyrrol-2-yl]methyl]-4-methyl-1H-pyrrol-3-yl]propanoylamino]ethanesulfonate
|
Synonyms |
68683-34-1; BILIRUBIN CONJUGATE; disodium;2-[3-[5-[(4-ethenyl-3-methyl-5-oxopyrrol-2-ylidene)methyl]-2-[[5-[(3-ethenyl-4-methyl-5-oxopyrrol-2-ylidene)methyl]-4-methyl-3-[3-oxo-3-(2-sulfonatoethylamino)propyl]-1H-pyrrol-2-yl]methyl]-4-methyl-1H-pyrrol-3-yl]propanoylamino]ethanesulfonate; Bilirubin Conjugate ditaurate disodium; Bilirubin Conjugate, Ditaurate, Disodium Salt; Bilirubin conjugate ditaurate disodium; Bilirubin conjugate; Disodium 2,2'-[(1,10,19,22,23,24-hexahydro-3,7,13,18-tetramethyl-1,19-d;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~100 mg/mL (~118.64 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.1864 mL | 5.9320 mL | 11.8639 mL | |
5 mM | 0.2373 mL | 1.1864 mL | 2.3728 mL | |
10 mM | 0.1186 mL | 0.5932 mL | 1.1864 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.