yingweiwo

Beraprost

Alias: ML-1229; MDL-201229; beraprost; 88430-50-6; 88430-50-6 (free acid); 4-[2-hydroxy-1-[(E)-3-hydroxy-4-methyloct-1-en-6-ynyl]-2,3,3a,8b-tetrahydro-1H-cyclopenta[b][1]benzofuran-5-yl]butanoic acid; Beraprost (USAN); 1H-Cyclopenta(b)benzofuran-5-butanoic acid, 2,3,3a,8b-tetrahydro-2-hydroxy-1-(3-hydroxy-4-methyl-1-octen-6-ynyl)-; 4-(2-Hydroxy-1-(3-hydroxy-4-methyloct-1-en-6-yn-1-yl)-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-5-yl)butanoic acid; 4-(1,2,3a,8b-tetrahydro-2-hydroxy-1-(3-hydroxy-4-methyloct-6-yne-1-enyl)-5-cyclopenta(b)benzofuranyl)butyrate; MDL 201229
Cat No.:V5947 Purity: ≥98%
Beraprost is a novel and potent prostacyclin analog
Beraprost
Beraprost Chemical Structure CAS No.: 88430-50-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Beraprost:

  • Beraprost sodium
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Beraprost is a novel and potent prostacyclin analog

Biological Activity I Assay Protocols (From Reference)
Targets
IP; Prodrug of PGI2; Vasodilator
ln Vitro
The number of blood vessels created increased significantly after treatment with beraprost sodium (0.1, 1.0, and 10.0 μM; 24 hours), and BPS is crucial for angiogenic activity [1]. When endothelial cells were treated with beraprost sodium (0.1, 1.0, and 10.0 μM) for 24 hours, the amount of VE-cadherin in the cell-cell contact area increased, and their shape tended to be normal in contrast to cells grown in hypoxic environments [1].
ln Vivo
Beraprost sodium is an oral medication that is administered once day for three to seven days at a dose of 0.6 mg/kg. It has the ability to lower renal oxidative stress and further prevent renal interstitial fibrosis. fibrosis [1].
Enzyme Assay
Tube formation assay[1] In brief, endothelial cells (1 × 104) were seeded in a 48-well plate coated with 100 μl of growth factor-reduced Matrigel TM and incubated with and without varied concentrations of BPS (Beraprost sodium) at 0.1, 1.0, and 10.0 μmol/l for tube stabilization for 24 h at 37 °C. Tube formation was quantified by measuring the total tube loops in five random microscopic fields with a computer-assisted microscope
Cell Assay
The HUVECs were cultured in a modified minimum essential medium supplemented with 10% fetal bovine serum and 1% mycillin at 37 °C in 5% CO2 and 95% air. HUVECs in hypoxia group were cultured for 12 h into an airtight humidified chamber flushed with a gas mixture containing 5% CO2, 95% N2, and 1% O2 at 37 °C. HUVECs in hypoxia + BPS group were cultured with BPS (Beraprost sodium) at 1.0 μmol/l. The cells were cultured according to the manufacturer’s instructions and the culture medium was changed every 2 or 3 days. HUVECs at passage 3 were used for the following experiments[1].
References
[1]. Li S, et al. Beraprost sodium mitigates renal interstitial fibrosis through repairing renal microvessels.J Mol Med (Berl). 2019 Jun;97(6):777-791.
Additional Infomation
Beraprost is a synthetic analogue of prostacyclin, under clinical trials for the treatment of pulmonary hypertension. It is also being studied for use in avoiding reperfusion injury.
Pharmacodynamics
Beraprost is a stable, orally active prostacyclin analogue with vasodilatory, antiplatelet and cytoprotective effects. Beraprost is generally well tolerated and appears to be an effective agent in the treatment of patients with Buerger's disease and arteriosclerosis obliterans. Comparative data from a large randomised trial indicated that the drug appears as effective as ticlopidine in patients with these conditions. In patients with intermittent claudication, significant benefits of beraprost compared with placebo were reported in a randomised clinical trial; however, the use of beraprost in these patients is not supported by recent preliminary unpublished data from a large, phase III, placebo-controlled study. Limited data suggest some efficacy with long-term beraprost treatment of patients with PAH, where options are few and where oral administration of the drug could be a considerable advantage over intravenous prostacyclin (PGI2) therapy.
Absorption
Oral bioavailability is 50–70%.
Biological Half-Life
35–40 minutes
Mechanism of Action
Beraprost acts by binding to prostacyclin membrane receptors ultimately inhibiting the release of Ca2+ from intracellular storage sites. This reduction in the influx of Ca2+ has been postulated to cause relaxation of the smooth muscle cells and vasodilation.
Pharmacodynamics
Beraprost is a stable, orally active prostacyclin analogue with vasodilatory, antiplatelet and cytoprotective effects. Beraprost is generally well tolerated and appears to be an effective agent in the treatment of patients with Buerger's disease and arteriosclerosis obliterans. Comparative data from a large randomised trial indicated that the drug appears as effective as ticlopidine in patients with these conditions. In patients with intermittent claudication, significant benefits of beraprost compared with placebo were reported in a randomised clinical trial; however, the use of beraprost in these patients is not supported by recent preliminary unpublished data from a large, phase III, placebo-controlled study. Limited data suggest some efficacy with long-term beraprost treatment of patients with PAH, where options are few and where oral administration of the drug could be a considerable advantage over intravenous prostacyclin (PGI2) therapy.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H30O5
Molecular Weight
398.499
Exact Mass
398.209
CAS #
88430-50-6
Related CAS #
88430-50-6 (free acid);88475-69-8 (sodium);
PubChem CID
5282428
Appearance
Typically exists as solid at room temperature
Density
1.3±0.1 g/cm3
Boiling Point
572.1±50.0 °C at 760 mmHg
Flash Point
193.1±23.6 °C
Vapour Pressure
0.0±1.7 mmHg at 25°C
Index of Refraction
1.625
LogP
2.87
SMILES
CC#CCC(C)C(/C=C\C1C(CC2C1C3=CC=CC(=C3O2)CCCC(=O)O)O)O
InChi Key
CTPOHARTNNSRSR-OUKQBFOZSA-N
InChi Code
InChI=1S/C24H30O5/c1-3-4-7-15(2)19(25)13-12-17-20(26)14-21-23(17)18-10-5-8-16(24(18)29-21)9-6-11-22(27)28/h5,8,10,12-13,15,17,19-21,23,25-26H,6-7,9,11,14H2,1-2H3,(H,27,28)/b13-12+
Chemical Name
4-[2-hydroxy-1-[(E)-3-hydroxy-4-methyloct-1-en-6-ynyl]-2,3,3a,8b-tetrahydro-1H-cyclopenta[b][1]benzofuran-5-yl]butanoic acid
Synonyms
ML-1229; MDL-201229; beraprost; 88430-50-6; 88430-50-6 (free acid); 4-[2-hydroxy-1-[(E)-3-hydroxy-4-methyloct-1-en-6-ynyl]-2,3,3a,8b-tetrahydro-1H-cyclopenta[b][1]benzofuran-5-yl]butanoic acid; Beraprost (USAN); 1H-Cyclopenta(b)benzofuran-5-butanoic acid, 2,3,3a,8b-tetrahydro-2-hydroxy-1-(3-hydroxy-4-methyl-1-octen-6-ynyl)-; 4-(2-Hydroxy-1-(3-hydroxy-4-methyloct-1-en-6-yn-1-yl)-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-5-yl)butanoic acid; 4-(1,2,3a,8b-tetrahydro-2-hydroxy-1-(3-hydroxy-4-methyloct-6-yne-1-enyl)-5-cyclopenta(b)benzofuranyl)butyrate; MDL 201229
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.5094 mL 12.5471 mL 25.0941 mL
5 mM 0.5019 mL 2.5094 mL 5.0188 mL
10 mM 0.2509 mL 1.2547 mL 2.5094 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Efficacy and Safety of Dorner Tablets and Aspirin for Prevention of Arteriosclerosis Progress in Type 2 Diabetes Mellitus Patients
CTID: NCT02786979
Phase: Phase 4
Status: Terminated
Date: 2016-06-21
TRK-100STP PhaseII Clinical Study -Chronic Renal Failure (Primary Glomerular Disease/Nephrosclerosis)
CTID: NCT02480751
Phase: Phase 2
Status: Completed
Date: 2015-06-29
Contact Us