yingweiwo

BCECF-AM

Alias: BCECF-acetoxymethyl; MFCD00036969; acetyloxymethyl 3',6'-bis(acetyloxymethoxy)-2',7'-bis[3-(acetyloxymethoxy)-3-oxopropyl]-3-oxospiro[2-benzofuran-1,9'-xanthene]-5-carboxylate; Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-2',7'-dipropanoic acid, 3',6'-bis(acetyloxy)-5(or 6)-[[(acetyloxy)methoxy]carbonyl]-3-oxo-, 2',7'-bis[(acetyloxy)methyl] ester; ...; BCECF/AM - CAS 117464-70-7;
Cat No.:V33702 Purity: ≥98%
BCECF-AM, also called2',7'-Bis- (2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein,AcetoxymethylEster, is a novel and potent fluorescent indicator which is cell membrane permeable and is thus widely used as a fluorescent marker/indicator for measurement of intracellular pH.
BCECF-AM
BCECF-AM Chemical Structure CAS No.: 117464-70-7
Product category: New8
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

BCECF-AM, also called 2',7'-Bis- (2-Carboxyethyl)-5- (and-6)-Carboxyfluorescein, Acetoxymethyl Ester, is a novel and potent fluorescent indicator which is cell membrane permeable and is thus widely used as a fluorescent marker/indicator for measurement of intracellular pH. It is the Acetoxymethyl Ester form of BCECF.

Biological Activity I Assay Protocols (From Reference)
Targets
Fluorescent indicator/dye for intracellular pH.
ln Vitro
Fully treated cells show hydrogenosomes with an electron-dense deposit which aggregates to a variable extent.The staining is observed in the interior of hydrogenosomes in some instances. It is also seen by microscopy that the K+/H+ ionophor nigericin does not inhibit hydrogenosomal loading with BCECF-AM.
The pH-sensitive fluorescent dyes to measure cytosolic pH.
1. Prepare a 2 to 20 mM stock solution of BCECF-AM in DMSO.
2. Prepare a 5-50 μM BCECF-AM dye-loading solution in buffer solutions (e.g. HHBS or PBS).
3. Add 1000 μL/well (6-well plate),100 μL/well (96-well plate) or 25 μL/well (384-well plate) BCECF-AM dye-loading solution into the cell plate.
4. Incubate the dye-loading plate in a cell incubator for 30-60 minutes.
5. Wash and replace the dye-loading solution with buffers.
6. Run the pH assay by monitoring the fluorescence at Ex/Em = 490/535 nm or 430/535 nm for ratio measurements.
Enzyme Assay
Effect of ET-1on Na+/H+ exchange[2]
A standard ammonia pulse technique was used to measure NHE activity (Figure 2A). PASMCs loaded with BCECF were perfused at a rate of 1 mL/min with Solution 1 containing (in mmol/L): 130 NaCl, 5 KCl, 1MgCl2, 1.5 CaCl2, 10 glucose and 20 HEPES with pH adjusted to 7.4 with NaOH at 37°C. Baseline pHi was measured for 2 min before cells were briefly exposed to NH4Cl (ammonium pulse) by perfusing with Solution 2 containing (in mmol/L): 110 NaCl, 20 NH4Cl, 5 KCl, 1MgCl2, 1.5 CaCl2, 10 glucose, 20 HEPES at a pH of 7.4 using NaOH for 3 min. The ammonium pulse caused alkalinization due to influx of NH3 and buffering of intracellular H+ (Fig 2A). Washout of NH4Cl in the absence of extracellular Na+ using a Na+- and NH4 +- free solution containing (in mmol/L): 130 choline chloride, 5 KCl, 1MgCl2, 1.5 CaCl2, 10 glucose and 20 HEPES at a pH of 7.4 using KOH for 10 min results in acidification due to rapid diffusion and washout of NH3. The external solution was then switched back to Na+-containing Solution 1 for 10 min. Re-addition of extracellular Na+ allows activation of Na+/H+ exchange and recovery from acidification to basal levels. The rate of Na+-dependent recovery from intracellular acidification (change in pH over 2 min) corresponds to NHE activity.
Cell Assay
Intracellular pH Measurements[2]
PASMCs were placed in a laminar flow cell chamber perfused with HBSS with pH adjusted to 7.4. pHi was measured in cells incubated with the membrane permeant (acetoxymethyl ester) form of the pH-sensitive fluorescent dye 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF-AM) for 60 min at 37°C under an atmosphere of 20% O2-5% CO2. Cells were then washed with HBSS for 15 min at 37°C to remove extracellular dye and allow complete de-esterification of cytosolic dye. Ratiometric measurement of BCECF fluorescence was performed on a workstation consisting of a Nikon TSE 100 Ellipse inverted microscope with epi-fluorescence attachments. The light beam from a xenon arc lamp was filtered by interference filters at 490 and 440 nm, and focused onto the PASMCS under examination via a 20× fluorescence objective. Light emitted from the cell at 530 nm was returned through the objective and detected by an imaging camera. An electronic shutter was used to minimize photobleaching of dye. Protocols were executed and data collected on-line with InCyte software. pHi was estimated from in situ calibration after each experiment. Cells were perfused with a solution containing (in mmol/L): 105 KCl, 1 MgCl2, 1.5 CaCl2, 10 glucose, 20 HEPES-Tris and 0.01 nigericin to allow pHi to equilibrate to external pH. A two point calibration was created from fluorescence measured as pHi was adjusted with KOH from 6.5 to 7.5. Intracellular H+ ion concentration ([H+]i) was determined from pHi using the formula: pHi  =  −log ([H+]i).
References

[1]. Analysis of the uptake of the fluorescent marker 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF) by hydrogenosomes in Trichomonas vaginalis. Eur J Cell Biol. 1998 Jun;76(2):139-45.

[2]. Endothelin-1 Augments Na+/H+ Exchange Activity in Murine Pulmonary Arterial Smooth Muscle Cells via Rho Kinase. PLoS One. 2012; 7(9): e46303.

Additional Infomation
The fluorescent dye 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF) has been widely used as an indicator of cytosolic pH. Here we report that BCECF localizes to hydrogenosomes (hydrogen-generating organelles found in several phylogenetically separate groups of anaerobic protists) in Trichomonas vaginalis, where it was observable by fluorescence microscopy. Its cellular location was confirmed by treatment of BCECF-loaded cells with diaminobenzidine and hydrogen peroxide together with UV illumination. This produced an osmiophilic precipitate in the matrix of hydrogenosomes, observable by electron microscopy. Use of a short (7.5 min) loading period, loading on ice, use of concentrations of BCECF (acetoxymethyl ester) down to 10 nM, and inclusion of the anion channel blockers probenicid or sulfinpyrazone, or the K+/H+ ionophore nigericin in the loading buffer all failed to prevent hydrogenosomal accumulation of BCECF. This uptake was best observed when intact cells were loaded with the ester form of BCECF, but could also be seen using free BCECF following either incubation with ruptured cells or electroporation of intact cells. Hydrogenosomal BCECF loading was also obtained with washed cell lysates, without cytoplasm or metabolic substrates. We tested a range of other fluorogenic dyes designed for cytosolic labeling, and found that the calcium indicator fura-2 (acetoxymethyl ester) and the cell viability marker fluorescein diacetate also labeled hydrogenosomes. The results illustrate a novel use for BCECF as a fluorescent marker for hydrogenosomes (the first such marker), but present a warning against the indiscriminate use of fluorogenic ester dyes to measure properties of the cytosol in hydrogenosome-containing organisms - the dyes may also be indicating the properties of the hydrogenosome.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C42H40O21
Molecular Weight
880.754400000001
Exact Mass
880.206
CAS #
117464-70-7
PubChem CID
53229972
Appearance
Orange to red solid powder
Density
1.5±0.1 g/cm3
Boiling Point
939.2±65.0 °C at 760 mmHg
Flash Point
368.9±34.3 °C
Vapour Pressure
0.0±0.3 mmHg at 25°C
Index of Refraction
1.602
LogP
0.9
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
21
Rotatable Bond Count
27
Heavy Atom Count
63
Complexity
1610
Defined Atom Stereocenter Count
0
InChi Key
NTECHUXHORNEGZ-UHFFFAOYSA-N
InChi Code
InChI=1S/C42H40O21/c1-22(43)52-17-57-34-15-36-32(13-27(34)7-10-38(48)59-19-54-24(3)45)42(31-9-6-29(12-30(31)41(51)63-42)40(50)61-21-56-26(5)47)33-14-28(8-11-39(49)60-20-55-25(4)46)35(16-37(33)62-36)58-18-53-23(2)44/h6,9,12-16H,7-8,10-11,17-21H2,1-5H3
Chemical Name
acetyloxymethyl 3',6'-bis(acetyloxymethoxy)-2',7'-bis[3-(acetyloxymethoxy)-3-oxopropyl]-3-oxospiro[2-benzofuran-1,9'-xanthene]-5-carboxylate
Synonyms
BCECF-acetoxymethyl; MFCD00036969; acetyloxymethyl 3',6'-bis(acetyloxymethoxy)-2',7'-bis[3-(acetyloxymethoxy)-3-oxopropyl]-3-oxospiro[2-benzofuran-1,9'-xanthene]-5-carboxylate; Spiro[isobenzofuran-1(3H),9'-[9H]xanthene]-2',7'-dipropanoic acid, 3',6'-bis(acetyloxy)-5(or 6)-[[(acetyloxy)methoxy]carbonyl]-3-oxo-, 2',7'-bis[(acetyloxy)methyl] ester; ...; BCECF/AM - CAS 117464-70-7;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: (1). This product requires protection from light (avoid light exposure) during transportation and storage.  (2). This product is not stable in solution, please use freshly prepared working solution for optimal results.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.1354 mL 5.6770 mL 11.3540 mL
5 mM 0.2271 mL 1.1354 mL 2.2708 mL
10 mM 0.1135 mL 0.5677 mL 1.1354 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us