Size | Price | Stock | Qty |
---|---|---|---|
250mg |
|
||
Other Sizes |
|
ADME/Pharmacokinetics |
Metabolism / Metabolites
Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Demethylation and glucuronidation may also occur. Oxidation of organophosphorus pesticides may result in moderately toxic products. In general, phosphorothioates are not directly toxic but require oxidative metabolism to the proximal toxin. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of organophosphate exposure. |
---|---|
Toxicity/Toxicokinetics |
Toxicity Summary
Azamethiphos is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen. |
Additional Infomation |
Azamethiphos is an organic thiophosphate, an organothiophosphate insecticide, an organochlorine insecticide and an organochlorine acaricide. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor and an agrochemical. It is functionally related to an oxazolo[4,5-b]pyridin-2(3H)-one.
Azamethiphos is a synthetic organic thiophosphate compound and organophosphate acetylcholinesterase inhibitor, mutagen, and neurotoxicant that is used as a pesticide. It is characterized as a highly soluble colorless to grey or orange yellow solid, and exposure occurs by inhalation, ingestion, or contact. Azamethiphos is an organophosphorus insecticide that acts by inhibition of cholinesterase activity. In veterinary medicine it is used in fish farming to control external parasites in Atlantic salmon. It exhibits moderate acute oral toxicity to mammals but has high acute oral toxicity to birds. |
Molecular Formula |
C9H10CLN2O5PS
|
---|---|
Molecular Weight |
324.6779
|
Exact Mass |
323.973
|
CAS # |
35575-96-3
|
PubChem CID |
71482
|
Appearance |
White to off-white solid powder
|
Density |
1.6±0.1 g/cm3
|
Boiling Point |
428.8±55.0 °C at 760 mmHg
|
Melting Point |
88-93°C
|
Flash Point |
213.1±31.5 °C
|
Vapour Pressure |
0.0±1.0 mmHg at 25°C
|
Index of Refraction |
1.589
|
LogP |
0.82
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
7
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
19
|
Complexity |
393
|
Defined Atom Stereocenter Count |
0
|
SMILES |
ClC1C([H])=NC2=C(C=1[H])OC(N2C([H])([H])SP(=O)(OC([H])([H])[H])OC([H])([H])[H])=O
|
InChi Key |
VNKBTWQZTQIWDV-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C9H10ClN2O5PS/c1-15-18(14,16-2)19-5-12-8-7(17-9(12)13)3-6(10)4-11-8/h3-4H,5H2,1-2H3
|
Chemical Name |
6-chloro-3-(dimethoxyphosphorylsulfanylmethyl)-[1,3]oxazolo[4,5-b]pyridin-2-one
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.0800 mL | 15.3998 mL | 30.7996 mL | |
5 mM | 0.6160 mL | 3.0800 mL | 6.1599 mL | |
10 mM | 0.3080 mL | 1.5400 mL | 3.0800 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.