yingweiwo

Axitinib sulfoxide (AG028458; PF03482595)

Alias: Axitinib sulfoxide; 1347304-18-0; Axitinib metabolite M12; AxitinibSulfoxide; AG-028458; 55P8GY3IEK; Benzamide, N-methyl-2-((3-((1E)-2-(2-pyridinyl)ethenyl)-1H-indazol-6-yl)sulfinyl); PF-03482595;
Cat No.:V7698 Purity: ≥98%
Axitinib sulfoxide (also known as AG-028458; PF-03482595) is a primary and S-oxidized metabolite of Axitinib, an investigational anticancer drug.
Axitinib sulfoxide (AG028458; PF03482595)
Axitinib sulfoxide (AG028458; PF03482595) Chemical Structure CAS No.: 1347304-18-0
Product category: New12
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

Axitinib sulfoxide (also known as AG-028458; PF-03482595) is a primary and S-oxidized metabolite of Axitinib, an investigational anticancer drug. Axitinib (AG013736 and Inlyta) is a potent, orally bioavailable, small molecule and multi-targeted inhibitor TKI (tyrosine kinase inhibitor) that inhibits VEGFR1, VEGFR2, VEGFR3, PDGFRβ and c-Kit with IC50 of 0.1 nM, 0.2 nM, 0.1-0.3 nM, 1.6 nM and 1.7 nM in Porcine aorta endothelial cells, respectively.

Biological Activity I Assay Protocols (From Reference)
Targets
Major metabolite of Axitinib; VEGFR
ln Vivo
[(11)C]axitinib and [(11)C]nintedanib were successfully synthesized with 10.5±2.6% and 25.6±3.3% radiochemical yield (corrected for decay), respectively. Biodistribution studies only demonstrated tumor uptake of [(11)C]nintedanib in FaDu xenografts of 1.66±0.02% ID/g at 60min p.i. In vivo stability analysis of [(11)C]axitinib at 45min p.i. revealed the formation of predominantly non-polar metabolites (36.6±6.8% vs 47.1±8.4% of parent tracer and 16.3±2.1% of polar metabolites), while for [(11)C]nintedanib mostly polar metabolites were found (70.9±4.1 vs 26.7±3.9% of parent tracer and only 2.4±1.6 of a non-polar metabolites). No isomerization of [(11)C]axtinib was observed in vivo; however, a sulfoxide metabolite could be detected using LC-MS/MS. For [(11)C]nintedanib, LC-MS/MS revealed formation of the reported primary carboxylic acid metabolite when in vitro plasma incubations were performed, with large differences in plasmas from different species. In vivo metabolite analysis, however, did not demonstrate the presence of the carboxylic acid in plasma or tumor tissue. Conclusions: Reliable syntheses of [(11)C]axitinib and [(11)C]nintedanib were successfully developed. Tumor uptake was observed for [(11)C]nintedanib, albeit modest. The metabolic profiles of the tracers suggest that rapid metabolism is partly responsible for the modest tumor targeting observed[1].
Animal Protocol
Following successful tracer synthesis, biodistribution studies in VU-SCC-OE and FaDu xenograft bearing mice were performed. Furthermore, tracer stability studies in mice were performed employing (radio-)HPLC and LC-MS/MS techniques. For [(11)C]nintedanib an LC-MS/MS method was developed to detect the primary carboxylic acid metabolite, resulting from methylester cleavage, in plasma and tumors, because this metabolite is postulated to be important for nintedanib efficacy. LC-MS/MS was also explored to assess the metabolic fate of [(11)C]axitinib in vivo, since axitinib has an isomerizable double bond[1].
References
[1]. Two anti-angiogenic TKI-PET tracers, [(11)C]axitinib and [(11)C]nintedanib: Radiosynthesis, in vivo metabolism and initial biodistribution studies in rodents. Nucl Med Biol. 2016 Oct;43(10):612-24.
Additional Infomation
Tyrosine kinase inhibitors (TKIs) are very attractive targeted drugs, although a large portion of patients remains unresponsive. PET imaging with EGFR targeting TKIs ([(11)C]erlotinib and [(18)F]afatinib) showed promise in identifying treatment sensitive tumors. The aim of this study was to synthesize two anti-angiogenic TKI tracers, [(11)C]axitinib and [(11)C]nintedanib, and to evaluate their potential for PET.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H18N4O2S
Molecular Weight
402.469
Exact Mass
402.115
Elemental Analysis
C, 65.65; H, 4.51; N, 13.92; O, 7.95; S, 7.97
CAS #
1347304-18-0
PubChem CID
86278350
Appearance
Typically exists as solid at room temperature
Density
1.4±0.1 g/cm3
Index of Refraction
1.748
LogP
2.9
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
5
Heavy Atom Count
29
Complexity
628
Defined Atom Stereocenter Count
0
SMILES
CNC(C1=CC=CC=C1S(C1C=CC2C(=NNC=2C=1)/C=C/C1=CC=CC=N1)=O)=O
InChi Key
MAHSNFBPPYMWFB-FMIVXFBMSA-N
InChi Code
InChI=1S/C22H18N4O2S/c1-23-22(27)18-7-2-3-8-21(18)29(28)16-10-11-17-19(25-26-20(17)14-16)12-9-15-6-4-5-13-24-15/h2-14H,1H3,(H,23,27)(H,25,26)/b12-9+
Chemical Name
N-methyl-2-[[3-[(E)-2-pyridin-2-ylethenyl]-1H-indazol-6-yl]sulfinyl]benzamide
Synonyms
Axitinib sulfoxide; 1347304-18-0; Axitinib metabolite M12; AxitinibSulfoxide; AG-028458; 55P8GY3IEK; Benzamide, N-methyl-2-((3-((1E)-2-(2-pyridinyl)ethenyl)-1H-indazol-6-yl)sulfinyl); PF-03482595;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4847 mL 12.4233 mL 24.8466 mL
5 mM 0.4969 mL 2.4847 mL 4.9693 mL
10 mM 0.2485 mL 1.2423 mL 2.4847 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us