yingweiwo

Apomorphine

Cat No.:V11482 Purity: ≥98%
Apomorphine is an orally bioactive Dopamine receptor agonist (activator).
Apomorphine
Apomorphine Chemical Structure CAS No.: 58-00-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Apomorphine:

  • Apomorphine HCl (APL130277; TAK251)
  • Apomorphine HCl hydrate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Apomorphine is an orally bioactive Dopamine receptor agonist (activator). Apomorphine may be utilized in study/research of Parkinson's disease (PD), bipolar movement disorders, urinary dysfunction, dystonia, dyspnea, spasticity and hiccups.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Apomorphine has a plasma Tmax of 10-20 minutes and a cerebrospinal fluid Tmax. The Cmax and AUC of apomorphine vary significantly between patients, with 5- to 10-fold differences being reported.
Data regarding apomorphine's route of elimination is not readily available. A study in rats has shown apomorphine is predominantly eliminated in the urine.
The apparent volume of distribution of subcutaneous apomorphine is 123-404L with an average of 218L. The apparent volume of distribution of sublingual apomorphine is 3630L.
The clearance of a 15mg sublingual dose of apomorphine is 1440L/h, while the clearance of an intravenous dose is 223L/h.
The plasma-to-whole blood apomorphine concentration ratio is equal to one. Mean (range) apparent volume of distribution was 218 L (123 - 404 L). Maximum concentrations in cerebrospinal fluid (CSF) are less than 10% of maximum plasma concentrations and occur 10 to 20 minutes later.
Apomorphine hydrochloride is a lipophilic compound that is rapidly absorbed (time to peak concentration ranges from 10 to 60 minutes) following subcutaneous administration into the abdominal wall. After subcutaneous administration, apomorphine appears to have bioavailability equal to that of an intravenous administration. Apomorphine exhibits linear pharmacokinetics over a dose range of 2 to 8 mg following a single subcutaneous injection of apomorphine into the abdominal wall in patients with idiopathic Parkinson's disease. /Apomorphine hydrochloride/
In the treatment of patients with Parkinson's disease, apomorphine has an established place as a back-up therapy if other antiparkinsonian drugs, such as levodopa and oral dopamine agonists, have not controlled the existing response fluctuations. Apomorphine is a synthetic derivative of morphine, with a totally distinct pharmacological profile. It is a very lipophilic compound which is easily (auto)oxidized. This (auto)oxidation is the main metabolic route besides glucuronidation and sulfation, which are both responsible for about 10% of the metabolic transformation. Apomorphine quickly passes the nasal and intestinal mucosa as well as the blood-brain barrier (depending on the administration route). Many routes of administration have been explored, but subcutaneous, sublingual, nasal and rectal administration are used in clinical practice. The volume of distribution varies between 1 and 2 times bodyweight. The elimination half-life is very short (30 to 90 min) depending on the type of parenteral administration. Apomorphine is a high clearance drug (3 to 5 L/kg/hr) and is mainly excreted and metabolised by the liver. Only 3 to 4% is excreted unchanged in the urine. The clinical effect of apomorphine can be linked directly to its concentration in the cerebrospinal fluid. Consequently, a 2-compartment model can be used to predict the clinical effects of apomorphine. The pharmacokinetic-pharmacodynamic data reflect the clinical observations of steep dose-effect curves if apomorphine is used in patients with random 'on-off' fluctuations. These dose-effect curves are less steep in stable or 'wearing-off' (end-of-dose deterioration) patients. Intravenous infusions of apomorphine in combination with timed motor assessments can be used clinically to characterize the therapeutic window of a particular patient if dyskinesia persists after single injections of apomorphine. If more population data become available, the population pharmacokinetics-pharmacodynamics of apomorphine could be helpful in predicting the clinical effects of apomorphine in the several subgroups of patients with Parkinson's disease.
Metabolism / Metabolites
Apomorphine is N-demethylated by CYP2B6, 2C8, 3A4, and 3A5. It can be glucuronidated by various UGTs, or sulfated by SULTs 1A1, 1A2, 1A3, 1E1, and 1B1. Approximately 60% of sublingual apomorphine is eliminated as a sulfate conjugate, though the structure of these sulfate conjugates are not readily available. The remainder of an apomorphine dose is eliminated as apomorphine glucuronide and norapomorphine glucuronide. Only 0.3% of subcutaneous apomorphine is recovered as the unchanged parent drug.
Routes of apomorphine metabolism in humans are not known. Potential metabolic routes include sulfation, N-demethylation, glucuronidation, and oxidation.1 Apomorphine undergoes rapid auto-oxidation in vitro. Cytochrome P-450 (CYP) enzymes play a minor role in the metabolism of apomorphine. In vitro studies have suggested that apomorphine may be metabolized by COMT. Data from in vivo studies indicate that apomorphine is not metabolized by COMT.
Hepatic
Half Life: 40 minutes (range 30 - 60 minutes)
Biological Half-Life
The terminal elimination half life of a 15mg sublingual dose of apomorphine is 1.7h, while the terminal elimination half life of an intravenous dose is 50 minutes.
The mean terminal elimination half-life is about 40 minutes (range about 30 to 60 minutes).
Toxicity/Toxicokinetics
Hepatotoxicity
Apomorphine has not been reported to cause serum aminotransferase elevations or clinically apparent acute liver injury, but its use has been limited and is typically given in low doses for a limited period of time. Thus, if apomorphine causes liver injury it must be rare.
Likelihood score: E (unlikely cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the use of apomorphine during breastfeeding. If apomorphine is required by the mother, it is not a reason to discontinue breastfeeding. However, apomorphine inhibits prolactin release in animals and might interfere with establishment of lactation. An alternate drug may be preferred, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Apomorphine is expected to be 99.9% bound to human serum albumin, as no unbound apomorphine is detected.
References

[1]. Subcutaneous apomorphine in the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry. 1990 Feb;53(2):96-101.

[2]. Apomorphine for Parkinson's Disease: Efficacy and Safety of Current and New Formulations. CNS Drugs. 2019 Sep;33(9):905-918.

Additional Infomation
Apomorphine is an aporphine alkaloid. It has a role as an alpha-adrenergic drug, a serotonergic drug, an antidyskinesia agent, a dopamine agonist, an antiparkinson drug and an emetic. It derives from a hydride of an aporphine.
Apomorphine is a non-ergoline dopamine D2 agonist indicated to treat hypomobility associated with Parkinson's. It was first synthesized in 1845 and first used in Parkinson's disease in 1884. Apomorphine has also been investigated as an emetic, a sedative, a treatment for alcoholism, and a treatment of other movement disorders. Apomorphine was granted FDA approval on 20 April 2004.
Apomorphine is a Dopaminergic Agonist. The mechanism of action of apomorphine is as a Dopamine Agonist.
Apomorphine is a subcutaneously administered dopamine receptor agonist used predominantly in the therapy of hypomobility of advanced Parkinson disease. The use of apomorphine has been limited, but it has not been associated with serum enzyme elevations during treatment nor has it been implicated in cases of acute liver injury.
Apomorphine Hydrochloride is the hydrochloride salt form of apomorphine, a derivative of morphine and non-ergoline dopamine agonist with high selectivity for dopamine D2, D3, D4 and D5 receptors. Apomorphine hydrochloride acts by stimulating dopamine receptors in the nigrostriatal system, hypothalamus, limbic system, pituitary gland, and blood vessels. This enhances motor function, suppresses prolactin release, and causes vasodilation and behavioral effects. Apomorphine hydrochloride is used in the treatment of Parkinson's disease and erectile dysfunction. In addition, apomorphine hydrochloride acts on the chemoreceptor trigger zone and is used as a central emetic in the treatment of drug overdose.
A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use. [PubChem]
A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use.
See also: Apomorphine Hydrochloride (has salt form); Apomorphine Diacetate (has salt form).
Drug Indication
Apomorphine is indicated to treat acute, intermittent treatment of hypomobility, off episodes associated with advanced Parkinson's disease.
FDA Label
Treatment of men with erectile dysfunction, which is the inability to achieve or maintain a penile erection sufficient for satisfactory sexual performance. In order for Uprima to be effective, sexual stimulation is required.
Treatment of men with erectile dysfunction, which is the inability to achieve or maintain a penile erection sufficient for satisfactory sexual performance. In order for Taluvian to be effective, sexual stimulation is required.
Treatment of men with erectile dysfunction, which is the inability to achieve or maintain a penile erection sufficient for satisfactory sexual performance. In order for Ixense to be effective, sexual stimulation is required.
Mechanism of Action
Apomorphine is a non-ergoline dopamine agonist with high binding affinity to dopamine D2, D3, and D5 receptors. Stimulation of D2 receptors in the caudate-putamen, a region of the brain responsible for locomotor control, may be responsible for apomorphine's action. However, the means by which the cellular effects of apomorphine treat hypomobility of Parkinson's remain unknown.
The exact mechanism of action of apomorphine hydrochloride in the treatment of Parkinson's disease has not been fully elucidated but may involve stimulation of postsynaptic dopamine D2 receptors within the caudate-putamen in the brain. Apomorphine has been shown to improve motor function in an animal model of Parkinson's disease. In particular, apomorphine attenuates the motor deficits associated with neurotoxin (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine ([MPTP])-induced lesions in the ascending nigrostriatal dopaminergic pathway in primates.
Apomorphine hydrochloride is a nonergot-derivative dopamine receptor agonist that is structurally and pharmacologically related to dopamine. In in vitro studies, apomorphine hydrochloride demonstrated a higher affinity for the dopamine D4 receptor than for dopamine D2, D3, or D5 receptors. Apomorphine hydrochloride binds with moderate affinity to alpha-adrenergic (alpha1D, alpha2B, alpha2C) receptors but has little or no affinity for dopamine D1 receptors, serotonergic (5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C) receptors, beta1- or beta2-adrenergic receptors, or histamine H1 receptors. /Apomorphine hydrochloride/
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H18NO2+
Molecular Weight
268.33032
Exact Mass
267.126
CAS #
58-00-4
Related CAS #
58-00-4;314-19-2 (HCl);41372-20-7 (HCl hydrate);41035-30-7 (S-isomer HCl); 39478-62-1 (S-isomer);
PubChem CID
6005
Appearance
Green to dark green solid powder
Density
1.299 g/cm3
Boiling Point
473.4ºC at 760 mmHg
Melting Point
195ºC (decomposes)
Flash Point
268.8ºC
LogP
2.787
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
0
Heavy Atom Count
20
Complexity
374
Defined Atom Stereocenter Count
1
SMILES
CN1CCC2=C3[C@H]1CC4=C(C3=CC=C2)C(=C(C=C4)O)O
InChi Key
VMWNQDUVQKEIOC-CYBMUJFWSA-N
InChi Code
InChI=1S/C17H17NO2/c1-18-8-7-10-3-2-4-12-15(10)13(18)9-11-5-6-14(19)17(20)16(11)12/h2-6,13,19-20H,7-9H2,1H3/t13-/m1/s1
Chemical Name
(6aR)-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-10,11-diol
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.7268 mL 18.6338 mL 37.2675 mL
5 mM 0.7454 mL 3.7268 mL 7.4535 mL
10 mM 0.3727 mL 1.8634 mL 3.7268 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us