yingweiwo

Amylin, amide, rat

Alias: Amylin (rat); 124447-81-0;
Cat No.:V33445 Purity: ≥98%
Amylin, amide, rat is a potent, high-affinity ligand for the amylin receptors AMY1 and AMY3.
Amylin, amide, rat
Amylin, amide, rat Chemical Structure CAS No.: 124447-81-0
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Amylin, amide, rat is a potent, high-affinity ligand for the amylin receptors AMY1 and AMY3.
Biological Activity I Assay Protocols (From Reference)
Targets
Amylin receptor AMY1/3
ln Vitro
Amylin is an important but poorly understood 37-amino acid glucose-regulating hormone with considerable potential to cure metabolic disorders. Amylin is a member of the calcitonin (CT) peptide family, which comprises CT itself, CGRP having two forms (αCGRP and βCGRP), adrenomedullin (AM), and AM2 (intermedin). Amylin is a key neuroendocrine hormone produced with insulin in pancreatic beta cells. Amylin maintains glucose homeostasis by decreasing gastric emptying, reducing the release of the counterregulatory hormone glucagon, and producing postprandial satiety. Amylin, a glucose-regulating and satiety-inducing hormone, reduces postprandial blood sugar increases and overeating. [1]
ln Vivo
Amylin is an important, but poorly understood, 37 amino acid glucoregulatory hormone with great potential to target metabolic diseases. A working example that the amylin system is one worth developing is the FDA-approved drug used in insulin-requiring diabetic patients, pramlintide. However, certain characteristics of pramlintide pharmacokinetics and formulation leave considerable room for further development of amylin-mimetic compounds. Given that amylin-mimetic drug design and development is an active area of research, surprisingly little is known about the structure/function relationships of amylin. This is largely due to the unfavourable aggregative and solubility properties of the native peptide sequence, which are further complicated by the composition of amylin receptors. These are complexes of the calcitonin receptor with receptor activity-modifying proteins. This review explores what is known of the structure-function relationships of amylin and provides insights that can be drawn from the closely related peptide, CGRP. We also describe how this information is aiding the development of more potent and stable amylin mimetics, including peptide hybrids. [1]
References

[1]. Amylin structure-function relationships and receptor pharmacology: implications for Amylin mimetic drug development. Br J Pharmacol. 2016 Jun;173(12):1883-98.

Additional Infomation
From available data thus far, it is becoming increasingly apparent that whilst the two‐domain model of binding and activation for family B receptor peptide ligands is useful, this is only to a limited degree. N‐terminal ring fragments retain biological activity (Rossowski et al., 1997), and C‐terminal fragments are often antagonists and retain binding to receptors (Barwell et al., 2012) validating these facets of the model; however, the data are not always so cleanly defined. Also questionable is the degree of importance of the disulphide ‘activation loop’ and C‐terminal tyrosine amide in the amylin peptide. The studies for amylin investigating their roles have not been carried out in biological assays with defined amylin receptors or in measuring canonical amylin‐mediated physiological actions (Roberts et al., 1989). With CGRP, breaking the N‐terminal disulphide still resulted in partial agonists in some biological assays. There are suitable suggestions as to the secondary structure the native amylin peptide adopts although, in solution, it is likely to be disordered and capriciously change structure (He et al., 2015). Information from CD and NMR studies utilize detergent membranes to mimic cellular membrane/peptide interactions, which are not ideal as they naturally instigate helical conformations, and these vary depending on solvent used and/or micellar composition (Watkins et al., 2012). In order to be certain, crystal structures of amylin or pramlintide bound to an amylin receptor are needed. The crystal structures for a CGRP27–37 analogue and AM37–52 offer useful insights (Booe et al., 2015) but fragments only tell part of the story, and N‐terminal interactions with receptor juxtamembrane regions are excluded in these models. The scope for peptide modification strategies to develop new amylin mimetics is substantial. However, to drive drug design and development, more information is needed to understand amylin and how it acts to elicit physiological responses and, thus, how its structure influences function. Metabolism and glucoregulation are enormously complex physiological processes requiring multifaceted hormonal and enzymic responses. In the future, it is likely to be combination therapies that will be the most useful to effectively target diseases such as diabetes and obesity.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C167H272N52O53S2
Molecular Weight
3920.39321422577
Exact Mass
3978.987
CAS #
124447-81-0
PubChem CID
163339198
Sequence
H-Lys-Cys(1)-Asn-Thr-Ala-Thr-Cys(1)-Ala-Thr-Gln-Arg-Leu-Ala-Asn-Phe-Leu-Val-Arg-Ser-Ser-Asn-Asn-Leu-Gly-Pro-Val-Leu-Pro-Pro-Thr-Asn-Val-Gly-Ser-Asn-Thr-Tyr-NH2; Lys-Cys-Asn-Thr-Ala-Thr-Cys-Ala-Thr-Gln-Arg-Leu-Ala-Asn-Phe-Leu-Val-Arg-Ser-Ser-Asn-Asn-Leu-Gly-Pro-Val-Leu-Pro-Pro-Thr-Asn-Val-Gly-Ser-Asn-Thr-Tyr-NH2 (Disulfide bridge: Cys2-Cys7); L-lysyl-L-cysteinyl-L-asparagyl-L-threonyl-L-alanyl-L-threonyl-L-cysteinyl-L-alanyl-L-threonyl-L-glutaminyl-L-arginyl-L-leucyl-L-alanyl-L-asparagyl-L-phenylalanyl-L-leucyl-L-valyl-L-arginyl-L-seryl-L-seryl-L-asparagyl-L-asparagyl-L-leucyl-glycyl-L-prolyl-L-valyl-L-leucyl-L-prolyl-L-prolyl-L-threonyl-L-asparagyl-L-valyl-glycyl-L-seryl-L-asparagyl-L-threonyl-L-tyrosinamide (2->7)-disulfide
SequenceShortening
KCNTATCATQRLANFLVRSSNNLGPVLPPTNVGSNTY-NH2 (Disulfide bridge: Cys2-Cys7); KCNTATCATQRLANFLVRSSNNLGPVLPPTNVGSNTY
Appearance
White to off-white solid powder
Hydrogen Bond Donor Count
59
Hydrogen Bond Acceptor Count
61
Rotatable Bond Count
112
Heavy Atom Count
278
Complexity
9610
Defined Atom Stereocenter Count
37
SMILES
S1C[C@@H](C(N[C@@H](C)C(N[C@@H]([C@@H](C)O)C(N[C@@H](CCC(N)=O)C(N[C@H](C(N[C@H](C(N[C@@H](C)C(N[C@@H](CC(N)=O)C(N[C@@H](CC2C=CC=CC=2)C(N[C@H](C(N[C@@H](C(C)C)C(N[C@@H](CCCNC(=N)N)C(N[C@@H](CO)C(N[C@@H](CO)C(N[C@@H](CC(N)=O)C(N[C@@H](CC(N)=O)C(N[C@@H](CC(C)C)C(NCC(N2CCC[C@H]2C(N[C@@H](C(C)C)C(N[C@@H](CC(C)C)C(N2CCC[C@H]2C(N2CCC[C@H]2C(N[C@H](C(N[C@H](C(N[C@H](C(NCC(N[C@H](C(N[C@H](C(N[C@H](C(N[C@H](C(N)=O)CC2C=CC(=CC=2)O)=O)[C@@H](C)O)=O)CC(N)=O)=O)CO)=O)=O)C(C)C)=O)CC(N)=O)=O)[C@@H](C)O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)CC(C)C)=O)=O)=O)=O)CC(C)C)=O)CCCNC(=N)N)=O)=O)=O)=O)NC([C@H]([C@@H](C)O)NC([C@H](C)NC([C@H]([C@@H](C)O)NC([C@H](CC(N)=O)NC([C@H](CS1)NC([C@H](CCCCN)N)=O)=O)=O)=O)=O)=O
InChi Key
FEOIOOASAUJGKY-HDCGBPIBSA-N
InChi Code
InChI=1S/C167H272N52O53S2.C2H4O2/c1-72(2)53-95(136(243)185-66-122(237)217-50-30-38-111(217)154(261)211-125(78(13)14)158(265)204-105(56-75(7)8)164(271)219-52-32-40-113(219)165(272)218-51-31-39-112(218)155(262)216-130(86(22)227)162(269)203-104(64-120(176)235)146(253)209-123(76(9)10)156(263)184-65-121(236)189-106(67-220)149(256)201-102(62-118(174)233)147(254)215-129(85(21)226)161(268)193-94(131(177)238)57-88-41-43-89(228)44-42-88)195-143(250)100(60-116(172)231)199-144(251)101(61-117(173)232)200-150(257)107(68-221)206-151(258)108(69-222)205-138(245)92(37-29-49-183-167(180)181)191-157(264)124(77(11)12)210-145(252)97(55-74(5)6)197-141(248)98(58-87-33-24-23-25-34-87)198-142(249)99(59-115(171)230)194-132(239)79(15)186-140(247)96(54-73(3)4)196-137(244)91(36-28-48-182-166(178)179)190-139(246)93(45-46-114(170)229)192-160(267)127(83(19)224)212-133(240)80(16)187-152(259)109-70-273-274-71-110(207-135(242)90(169)35-26-27-47-168)153(260)202-103(63-119(175)234)148(255)214-126(82(18)223)159(266)188-81(17)134(241)213-128(84(20)225)163(270)208-109;1-2(3)4/h23-25,33-34,41-44,72-86,90-113,123-130,220-228H,26-32,35-40,45-71,168-169H2,1-22H3,(H2,170,229)(H2,171,230)(H2,172,231)(H2,173,232)(H2,174,233)(H2,175,234)(H2,176,235)(H2,177,238)(H,184,263)(H,185,243)(H,186,247)(H,187,259)(H,188,266)(H,189,236)(H,190,246)(H,191,264)(H,192,267)(H,193,268)(H,194,239)(H,195,250)(H,196,244)(H,197,248)(H,198,249)(H,199,251)(H,200,257)(H,201,256)(H,202,260)(H,203,269)(H,204,265)(H,205,245)(H,206,258)(H,207,242)(H,208,270)(H,209,253)(H,210,252)(H,211,261)(H,212,240)(H,213,241)(H,214,255)(H,215,254)(H,216,262)(H4,178,179,182)(H4,180,181,183);1H3,(H,3,4)/t79-,80-,81-,82+,83+,84+,85+,86+,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103?,104-,105-,106-,107-,108-,109-,110?,111-,112-,113-,123-,124-,125-,126-,127-,128?,129-,130-;/m0./s1
Chemical Name
acetic acid;(2S)-N-[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-4-amino-1-[[(2S)-1-[[2-[(2S)-2-[[(2S)-1-[[(2S)-1-[(2S)-2-[(2S)-2-[[(2S,3R)-1-[[(2S)-4-amino-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-4-amino-1-[[(2S,3R)-1-[[(2S)-1-amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]carbamoyl]pyrrolidine-1-carbonyl]pyrrolidin-1-yl]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]-2-[[(2S,3R)-2-[[(2S)-2-[[(4R,10S,13S)-16-(2-amino-2-oxoethyl)-19-[[(2S)-2,6-diaminohexanoyl]amino]-7,13-bis[(1R)-1-hydroxyethyl]-10-methyl-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carbonyl]amino]propanoyl]amino]-3-hydroxybutanoyl]amino]pentanediamide
Synonyms
Amylin (rat); 124447-81-0;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~100 mg/mL (~25.51 mM)
DMSO : ~50 mg/mL (~12.75 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.2551 mL 1.2754 mL 2.5508 mL
5 mM 0.0510 mL 0.2551 mL 0.5102 mL
10 mM 0.0255 mL 0.1275 mL 0.2551 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us