yingweiwo

(Ala11,D-Leu15)-Orexin B (human)

Alias: [Ala11,D-Leu15]-Orexin B; 532932-99-3; (Ala11,d-leu15)-orexin b(human); [Ala11,D-Leu15]-Orexin B TFA;
Cat No.:V36612 Purity: ≥98%
[Ala11,D-Leu15]-Orexin B(human) is a potent and specific orexin-2 receptor (OX2) agonist.
(Ala11,D-Leu15)-Orexin B (human)
(Ala11,D-Leu15)-Orexin B (human) Chemical Structure CAS No.: 532932-99-3
Product category: Peptides
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
[Ala11,D-Leu15]-Orexin B(human) is a potent and specific orexin-2 receptor (OX2) agonist. [Ala11,D-Leu15]-Orexin B(human) is 400-fold more selective for OX2 (EC50=0.13 nM) than OX1 (52 nM).
Biological Activity I Assay Protocols (From Reference)
Targets
OX2 (EC50 = 0.13 nM); OX1 (EC50 = 52 nM)
ln Vitro
Investigation of l-alanine and d-amino acid replacement of orexin-B revealed that three l-leucine residues at the positions of 11, 14, and 15 in orexin-B were important to show selectivity for the orexin-2 receptor (OX2) over the orexin-1 receptor (OX1). l-Alanine substitution at position 11 and d-leucine substitution at positions 14 and 15 maintained the potency of orexin-B to mobilize [Ca2+]i in CHO cells expressing the OX2, while their potency for the OX1 was significantly reduced. In combined substitutions, we identified that [Ala11, D-Leu15] Orexin-B showed a 400-fold selectivity for the OX2 (EC50=0.13 nM) over OX1 (EC50=52 nM). [Ala11, d-Leu15]orexin-B is a beneficial tool for addressing the functional roles of the OX2 [1].
ln Vivo
OX2R Agonist Prevents Diet-Induced Obesity[2]
Our genetic studies implicate the OX2R pathway as mediator of the effects of orexin overexpression upon energy homeostasis. To further test the hypothesis that central enhancement of orexin-OX2R signaling confers resistance to diet-induced obesity, an OX2R selective agonist [Ala11, D-Leu15] Orexin-B (Asahi et al., 2003) was continuously infused in the lateral ventricles of wild-type mice for 14 days. The administration of the OX2R selective agonist suppressed weight gain on a high-fat diet without altering weight homeostasis on a low-fat diet (Figure 5A). Importantly, the OX2R selective agonist had no obvious effect upon OX2R-deficient mice on a high-fat diet (n = 4, weight gain 3.33 ± 0.61 g, p = 0.67), verifying the specificity of the agonist in vivo. Following 14 days, the agonist-infused wild-type mice gained significantly less fat mass than did the vehicle-injected mice on a high-fat diet, and no effect was observed on a low-fat diet (Figure 5B). When centrally infused mice fed a high-fat diet were monitored in metabolic chambers, OX2R agonist infusions resulted in consistently greater energy expenditures (Figure 5C), but not RQs (Figure 5D) or locomotor activity (data not shown), over vehicle-infused controls.
Animal Protocol
To further test the hypothesis that central enhancement of orexin-OX2R signaling confers resistance to diet-induced obesity, an OX2R selective agonist [Ala11, D-Leu15] Orexin-B (Asahi et al., 2003) was continuously infused in the lateral ventricles of wild-type mice for 14 days. The administration of the OX2R selective agonist suppressed weight gain on a high-fat diet without altering weight homeostasis on a low-fat diet (Figure 5A).[2]
Chronic ICV Injection [2]
Three- to four-month-old male C57B/6J mice were single-housed 1 week before surgery and fed a low-fat diet. Mice were anesthetized with ketamine and xylazine (100 mg/Kg and 10 mg/Kg, respectively, i.p.). A cannula was implanted into the right lateral ventricle (0.3 mm posterior from the bregma, 0.9 mm lateral from the midline, and 2.4 mm from the surface of skull) using standard sterile stereotactic techniques. An osmotic minipump (model 2001; Alzet) was attached to the cannula and implanted in the subcutaneous space during the same surgical session. The OX2R selective agonist ([Ala11, D-Leu15] Orexin-B) (Asahi et al., 2003) or vehicle was continuously injected in the lateral ventricle for 14 days (0.5 nmol/day). The agonist was diluted with vehicle immediately before use. At the day of surgery, the implanted mice were randomly assigned to a low-fat diet or a high-fat diet. Body weight and food intake were monitored daily for 14 days, and fat mass was detected by NMR immediately after surgery and again at day 14. Twelve-week-old ob/ob male mice were used for chronic ICV infusion of OX2R agonist for 10 days as described above. For leptin administration experiments, weight-matched 3- to 4-month-old CAG/orexin and wild-type littermates were continuously injected with leptin (2 μg/day), as described above, while maintained on a low-fat diet. Body weight and food intake were monitored daily for 14 days.
References

[1]. Development of an orexin-2 receptor selective agonist, [Ala(11), D-Leu(15)]orexin-B. Bioorg Med Chem Lett. 2003;13(1):111-113.

[2]. Enhanced Orexin Receptor-2 Signaling Prevents Diet-Induced Obesity and Improves Leptin Sensitivity. Cell Metab. 2009 Jan 7;9(1):64-76.

Additional Infomation
In conclusion, [Ala11, d-Leu15]orexin-B identified in the course of the l-alanine and d-amino acid replacements of orexin-B is a potent and selective OX2 agonist. A novel agonist, [Ala11, d-Leu15]orexin-B should be a promising tool for addressing the roles of OX2. [1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C120H206N44O35S
Molecular Weight
2857.25843999999
Exact Mass
2855.541
CAS #
532932-99-3
Related CAS #
[Ala11,D-Leu15]-Orexin B(human) TFA
PubChem CID
90473850
Sequence
Arg-Ser-Gly-Pro-Pro-Gly-Leu-Gln-Gly-Arg-Ala-Gln-Arg-Leu-Leu-Gln-Ala-Ser-Gly-Asn-His-Ala-Ala-Gly-Ile-Leu-Thr-Met-NH2; H-Arg-Ser-Gly-Pro-Pro-Gly-Leu-Gln-Gly-Arg-Ala-Gln-Arg-Leu-D-Leu-Gln-Ala-Ser-Gly-Asn-His-Ala-Ala-Gly-Ile-Leu-Thr-Met-NH2; L-arginyl-L-seryl-glycyl-L-prolyl-L-prolyl-glycyl-L-leucyl-L-glutaminyl-glycyl-L-arginyl-L-alanyl-L-glutaminyl-L-arginyl-L-leucyl-D-leucyl-L-glutaminyl-L-alanyl-L-seryl-glycyl-L-asparagyl-L-histidyl-L-alanyl-L-alanyl-glycyl-L-isoleucyl-L-leucyl-L-threonyl-L-methioninamide
SequenceShortening
RSGPPGLQGRAQRLLQASGNHAAGILTM; RSGPPGLQGRAQRLLQASGNHAAGILTM-NH2
Appearance
White to off-white solid powder
Density
1.5±0.1 g/cm3
Index of Refraction
1.670
LogP
-10.7
Hydrogen Bond Donor Count
44
Hydrogen Bond Acceptor Count
41
Rotatable Bond Count
97
Heavy Atom Count
200
Complexity
6570
Defined Atom Stereocenter Count
25
SMILES
CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCSC)C(=O)N)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC1=CNC=N1)NC(=O)[C@H](CC(=O)N)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](C)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(=N)N)NC(=O)CNC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@@H]2CCCN2C(=O)[C@@H]3CCCN3C(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(=N)N)N
InChi Key
SURUUKNICBOUOQ-UBNRXWOCSA-N
InChi Code
InChI=1S/C120H206N44O35S/c1-17-60(10)93(115(197)158-77(44-59(8)9)113(195)162-94(65(15)167)116(198)150-68(95(126)177)34-40-200-16)161-91(175)51-137-96(178)61(11)143-97(179)62(12)146-108(190)78(45-66-47-133-55-142-66)157-112(194)79(46-87(125)171)149-89(173)49-139-102(184)80(53-165)159-99(181)64(14)145-105(187)72(29-32-85(123)169)154-110(192)75(42-57(4)5)156-111(193)76(43-58(6)7)155-106(188)70(25-20-37-136-120(131)132)152-107(189)73(30-33-86(124)170)151-98(180)63(13)144-104(186)69(24-19-36-135-119(129)130)147-88(172)48-138-101(183)71(28-31-84(122)168)153-109(191)74(41-56(2)3)148-90(174)50-140-114(196)82-26-21-39-164(82)117(199)83-27-22-38-163(83)92(176)52-141-103(185)81(54-166)160-100(182)67(121)23-18-35-134-118(127)128/h47,55-65,67-83,93-94,165-167H,17-46,48-54,121H2,1-16H3,(H2,122,168)(H2,123,169)(H2,124,170)(H2,125,171)(H2,126,177)(H,133,142)(H,137,178)(H,138,183)(H,139,184)(H,140,196)(H,141,185)(H,143,179)(H,144,186)(H,145,187)(H,146,190)(H,147,172)(H,148,174)(H,149,173)(H,150,198)(H,151,180)(H,152,189)(H,153,191)(H,154,192)(H,155,188)(H,156,193)(H,157,194)(H,158,197)(H,159,181)(H,160,182)(H,161,175)(H,162,195)(H4,127,128,134)(H4,129,130,135)(H4,131,132,136)/t60-,61-,62-,63-,64-,65+,67-,68-,69-,70-,71-,72-,73-,74-,75+,76-,77-,78-,79-,80-,81-,82-,83-,93-,94-/m0/s1
Chemical Name
(2S)-N-[(2S)-1-[[(2S)-1-[[(2R)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S,3S)-1-[[(2S)-1-[[(2S,3R)-1-[[(2S)-1-amino-4-methylsulfanyl-1-oxobutan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-2-oxoethyl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-5-amino-2-[[(2S)-2-[[2-[[(2S)-1-[(2S)-1-[2-[[(2S)-2-[[(2S)-2-amino-5-carbamimidamidopentanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]acetyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoyl]amino]acetyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]amino]pentanediamide
Synonyms
[Ala11,D-Leu15]-Orexin B; 532932-99-3; (Ala11,d-leu15)-orexin b(human); [Ala11,D-Leu15]-Orexin B TFA;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.3500 mL 1.7499 mL 3.4999 mL
5 mM 0.0700 mL 0.3500 mL 0.7000 mL
10 mM 0.0350 mL 0.1750 mL 0.3500 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us