Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Agmatine is a novel and potent decarboxylated arginine
Additional Infomation |
Agmatine is a primary amino compound and a member of guanidines. It has a role as an Escherichia coli metabolite and a mouse metabolite. It is a conjugate base of an agmatinium(2+).
Agmantine is a natural metabolite of the amino acid arginine. It is formed when arginine is decarboxylated by the enzyme arginine decarboxylase and is found naturally in ragweed pollen, ergot fungi, octopus muscle, herring sperm, sponges, and the mammalian brain. Agmatine is both an experimental and investigational drug. As an investigational drug, it is being studied in a non-blinded prospective case study in the United States looking at patients who have been diagnosed with small fiber peripheral neuropathy between the ages of 18 to 75 years. Up to now (July 2013), the results of this study have not yet been published. As an experimental drug, agmatine is being studied for several indications such as cardioprotection, diabetes, decreased kidney function, neuroprotection (stroke, severe CNS injuries, epilepsy, glaucoma, and neuropathic pain), and psychiatric conditions (depression, anxiety, schizophrenia, and cognition). The exact mechanism of action is still being investigated for all of the potential indications of agmatine. Agmatine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Agmatine has been reported in Glycine max, Mizuhopecten yessoensis, and other organisms with data available. Decarboxylated arginine, isolated from several plant and animal sources, e.g., pollen, ergot, herring sperm, octopus muscle. Drug Indication Agmatine is being studied experimentally for several indications such as cardioprotection, diabetes, decreased kidney function, neuroprotection (stroke, severe CNS injuries, epilepsy, glaucoma, and neuropathic pain), and psychiatric conditions (depression, anxiety, schizophrenia, and cognition). As an investigational drug, agamatine is being studied in a non-blinded prospective case study in the United States looking at patients who have been diagnosed with small fiber peripheral neuropathy. Mechanism of Action The exact mechanism of action is still being investigated for all of the potential indications of agmatine. Some of the biochemical mechanisms discovered so far concern agmatine's indication for diabetes, neuroprotection, and psychiatric conditions. In diabetes, agmatine produces hypoglycemia by increasing the release of insulin form pancreatic islet cells and increasing glucose uptake by the cells through increased endorphin release from the adrenal glands. Concerning neuroprotection, agmatine's effects are thought to involve modulation of receptors (NMDA, alpha 2, and imidazoline) and ion channels (ATP sensitive potassium channels and voltage-gated calcium channels) as well as blocking nitric oxide synthesis. Agmatine blocks nitric oxide synthesis by reducing the nitric oxide synthase -2 (NOS-2) protein in astroglial cells and macrophages. With respect to agmatine's benefit in psychiatric disorders, it is suggested that the mechanism involves neurotransmitter receptor modulation of the NMDA, alpha-2, serotonin, opioid, and imidazoline receptors. Specifically when agmatine binds to the imidazoline and alpha 2 receptors, it acts as a neurotransmitter and releases catecholamines from the adrenal gland. |
---|
Molecular Formula |
C5H14N4
|
---|---|
Exact Mass |
130.122
|
CAS # |
306-60-5
|
Related CAS # |
306-60-5 ( free base);2482-00-0 (sulfate);
|
PubChem CID |
199
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.2 g/cm3
|
Boiling Point |
281.4ºC at 760 mmHg
|
Melting Point |
234-238 degress Celcius
|
Flash Point |
124ºC
|
LogP |
1.099
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
2
|
Rotatable Bond Count |
4
|
Heavy Atom Count |
9
|
Complexity |
85
|
Defined Atom Stereocenter Count |
0
|
SMILES |
NCCCCNC(N)=N
|
InChi Key |
QYPPJABKJHAVHS-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C5H14N4/c6-3-1-2-4-9-5(7)8/h1-4,6H2,(H4,7,8,9)
|
Chemical Name |
2-(4-aminobutyl)guanidine
|
Synonyms |
NSC56332NSC 56332Agmatine NSC-56332
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.