yingweiwo

Trifluoromethyl-tubercidin (TFMT)

Alias: Trifluoromethyl-tubercidin; 1854086-05-7; (2R,3R,4S,5R)-2-[4-amino-5-(trifluoromethyl)pyrrolo[2,3-d]pyrimidin-7-yl]-5-(hydroxymethyl)oxolane-3,4-diol; TFMT?; SCHEMBL17406905; RSOXZOFDCJMRMK-IOSLPCCCSA-N; NSC793694; NSC-793694;
Cat No.:V54354 Purity: ≥98%
Triflumethyl-tubercidin (TFMT) is a 2'-O-ribose methyltransferase 1 (MTr1) inhibitor that limits influenza virus replication by interacting with its S-adenosyl-L-methionine binding pocket.
Trifluoromethyl-tubercidin (TFMT)
Trifluoromethyl-tubercidin (TFMT) Chemical Structure CAS No.: 1854086-05-7
Product category: Influenza Virus
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Triflumethyl-tubercidin (TFMT) is a 2'-O-ribose methyltransferase 1 (MTr1) inhibitor that limits influenza virus replication by interacting with its S-adenosyl-L-methionine binding pocket.
Biological Activity I Assay Protocols (From Reference)
Targets
MTr1 (2'-O-ribose methyltransferase 1)
ln Vitro
In step three, researchers evaluated which of the identified compounds had an inhibitory effect at the lowest concentration and finally identified Trifluoromethyl-tubercidin (TFMT) as the most effective compound (Fig. 2AOpens in image viewer and fig. S8, A and B). We confirmed the binding of TFMT to the SAM binding pocket of MTr1 and recombinant MTr1 with in silico docking and in vitro thermal shift assay (Fig. 2BOpens in image viewer and fig. S8C), respectively. Furthermore, we confirmed TFMT inhibition of the MTase activity of the recombinant MTr1 protein (fig. S8D). We also confirmed TFMT was active against IAV and IBV but not HAZV or STBV (Fig. 2COpens in image viewer), exactly matching the phenotypes of MTr1 deficiency shown in Fig. 1Opens in image viewer and fig. S6. The median inhibitory concentration (IC50) for TFMT against IAV infection was 0.30 μM, and no notable in vitro toxicity was observed in the range of effective concentrations, as measured with water-soluble tetrazolium (WST)–8 cell viability assay (Fig. 2DOpens in image viewer). TFMT treatment also greatly inhibited IAV replication when administered 3 to 4 hours after infection; however, the effect was reduced or not visible if the drug was administered later (fig. S8E) [1].
Anti-influenza efficacy of Trifluoromethyl-tubercidin/TFMT [1]
Next, researchers examined the anti-IAV activity of Trifluoromethyl-tubercidin/TFMT in normal human bronchial epithelial (NHBE) cells. The RNA and protein levels of IAV (H1N1, PR8) were significantly reduced by TFMT treatment in a dose-dependent manner (Fig. 2, E and FOpens in image viewer). Histological analysis also revealed a profound reduction of the IAV NP levels in TFMT-treated NHBE cells without cytotoxicity (Fig. 2GOpens in image viewer). TFMT treatment did not inhibit HAZV replication (Fig. 2HOpens in image viewer), indicating that specific efficacy against certain viruses by this compound was retained even in human primary cells. Because this compound was effective in human NHBE cells, this prompted us to evaluate TFMT in human lung explants as an ex vivo setting (fig. S9A). We infected lung tissues with IAV (H1N1, seasonal isolate in 2019), and the viral titer in the supernatant was determined with plaque assay at 1, 24, 48, and 72 hours after infection. As shown in Fig. 3AOpens in image viewer, the titer in the nontreated samples increased >105 plaque-forming units (PFU)/ml at 48 or 72 hours after infection, whereas the titer from the TFMT-treated lung explants remained <103 PFU/ml, indicating 100- to 1000-fold suppression by the treatment. The sum of the titers of all six independent donors revealed differences between the control and TFMT treatment–reduced IAV titers in culture supernatants (Fig. 3BOpens in image viewer and fig. S9B). TFMT treatment at 12 hours IAV after infection significantly impaired virus growth in human lung explants (fig. S9C). Consistent with virus titers observed, no IAV NP–positive cells or morphological changes were observed in IAV-infected lung tissues treated with TFMT. These results indicate that TFMT inhibits replication of the seasonal IAV isolate ex vivo and shows potential for clinical translation.
TFMT/Trifluoromethyl-tubercidin inhibits IAV cap snatching [1]
As shown in Fig. 4AOpens in image viewer, the effect of TFMT treatment on IAV replication was independent of IFIT1-dependent sequestration of RNA or RIG-I or MDA5 signaling. We found no replication of IAV in RIG-I–MTr1 double KO cells or IFIT1-MTr1 double KO cells, similarly to MTr1 KO cells (fig. S11, A and B). In addition, IFN signaling blockade by JAK inhibitor tofacitinib was not accompanied by IAV replication in MTr1 KO cells (fig. S12, C and D). Influenza A virus with a deletion of nonstructural protein 1 (IAVΔNS1) is known to induce high IFN responses, and its replication was prevented in MTr1-deficient cells without IFN and ISG (interferon-stimulated gene) induction but was rescued by MTr1 overexpression (fig. S2, D and E). TFMT treatment did not induce IFN-β or antiviral ISGs in A549 cells nor in PBMC (Fig. 4BOpens in image viewer and fig. S12). These results confirm that the observed antiviral effect does not depend on activation of antiviral IFN responses. Replication of IFN-sensitive non–cap-snatching RNA viruses such as Sendai virus (SeV), vesicular stomatitis virus (VSV), and encephalomyocarditis virus (EMCV) were not altered by TFMT treatment (Fig. 4COpens in image viewer)—likewise, in MTr1 KO cells (fig. S13). Expression of IAV mRNA (segment 1) snatched specifically from U2 spliceosomal snRNA was impaired by TFMT treatment, similar to the effect of MTr1 deficiency. Hence, we conclude that TFMT treatment inhibits IAV replication by directly affecting the cap-snatching activity of IAV and not through immune modulation.
ln Vivo
Researchers tested the in vivo efficacy of this compound in mice. They first confirmed that TFMT/Trifluoromethyl-tubercidin showed inhibitory activity in the IAV-infected mouse cell line LA-4, albeit with lower potency (IC50 = 7.7 μM) than in human cells (fig. S10A). Next, we assessed in vivo toxicity in mice with intranasal inoculation once a day for 2 days. Although treatment with the parental compound tubercidin caused substantial weight loss of mice, we did not observe any weight loss or cytotoxicity in lungs with the selected derivative TFMT (Fig. 3DOpens in image viewer and fig. S10B). Last, we examined the effect of TFMT treatment at 2 days after infection with IAV. At this point, NP and PB2 mRNA levels were significantly reduced by TFMT treatment in mouse lungs, indicating that the trifluoromethyl substitution of tubercidin reduces in vivo toxicity to levels we could not detect, but retains anti-IAV efficacy (Fig. 3EOpens in image viewer). We also confirmed the antiviral efficacy of baloxavir marboxil (BXM) in vivo in this setting (fig. S10C). Taken together, TFMT shows potential to inhibit IAV replication in all tested systems, including a human cell line and NHBE cells in vitro, human lung explants ex vivo, and mice in vivo [1].
References

[1]. Inhibition of cellular RNA methyltransferase abrogates influenza virus capping and replication. Science. 2023 Feb 10;379(6632):586-591.

Additional Infomation
Orthomyxo- and bunyaviruses steal the 5' cap portion of host RNAs to prime their own transcription in a process called "cap snatching." We report that RNA modification of the cap portion by host 2'-O-ribose methyltransferase 1 (MTr1) is essential for the initiation of influenza A and B virus replication, but not for other cap-snatching viruses. We identified with in silico compound screening and functional analysis a derivative of a natural product from Streptomyces, called Trifluoromethyl-tubercidin (TFMT), that inhibits MTr1 through interaction at its S-adenosyl-l-methionine binding pocket to restrict influenza virus replication. Mechanistically, TFMT impairs the association of host cap RNAs with the viral polymerase basic protein 2 subunit in human lung explants and in vivo in mice. TFMT acts synergistically with approved anti-influenza drugs.[1]
Currently approved drugs for IAV treatment against viral proteins are available; however, drug-resistant virus mutants have been reported for all. Host-directed antiviral drugs are less likely to induce resistance, and the host mitogen-activated protein kinase inhibitor ATR-002 has been shown to have broad efficacy against RNA viruses, including influenza viruses and SARS-CoV-2, by inhibiting viral replication and modulating inflammation. In this study, we show the anti-influenza efficacy of a cellular RNA methyltransferase inhibitor Trifluoromethyl-tubercidin/TFMT. Considering possible toxicity through long-term targeting of host factors, it will be practical to minimize the dose and combine with other approved virus-directed drugs such as BXM and oseltamivir.
We found that TFMT is a highly specific and nontoxic MTr1 inhibitor that specifically restricts replication of the cap snatching–dependent viruses, IAV and IBV (fig. S19). Collectively, our data show that suppression of MTr1 cap snatching by TFMT specifically inhibits replication of several strains of IAV and IBV, including a seasonal H1N1 isolate and a highly pathogenic and BXM-resistant avian IAV. Mechanistically, TFMT causes MTr1 disfunction and cap0 RNA accumulation, which impairs binding of the viral polymerase subunit PB2 to host cap RNAs and thereby hinders IAV polymerase–mediated cap snatching and viral RNA synthesis. TFMT acts in synergy with BXM because the drugs target distinct polymerase subunits PB2 and PA, respectively. TFMT-dependent restriction of IAV is independent of innate immune responses by RIG-I and IFIT1, and TFMT has no effect on the replication of interferon-sensitive viruses, such as VSV and EMCV. Comparison of PB2 subunits of influenza viruses and THOV showed that the primary structure of the cap RNA–binding region (such as N1-2′-O-Me–interactive amino acids) of IAV PB2 is conserved in IBV PB2 but not in ICV, IDV, or THOV PB2 (fig. S14B). Moreover, IAV requires 10 to 13 nucleotides for cap snatching, whereas THOV is reported to snatch the 5′-terminal m7G cap residue. Mechanistic differences among viral polymerases for cap snatching may explain the specificity of TFMT-restriction for IAV and IBV.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C12H13F3N4O4
Molecular Weight
334.251232862473
Exact Mass
334.088
CAS #
1854086-05-7
PubChem CID
118636125
Appearance
White to off-white solid powder
LogP
-0.5
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
10
Rotatable Bond Count
2
Heavy Atom Count
23
Complexity
443
Defined Atom Stereocenter Count
4
SMILES
C1=C(C2=C(N=CN=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)CO)O)O)N)C(F)(F)F
InChi Key
RSOXZOFDCJMRMK-IOSLPCCCSA-N
InChi Code
InChI=1S/C12H13F3N4O4/c13-12(14,15)4-1-19(10-6(4)9(16)17-3-18-10)11-8(22)7(21)5(2-20)23-11/h1,3,5,7-8,11,20-22H,2H2,(H2,16,17,18)/t5-,7-,8-,11-/m1/s1
Chemical Name
(2R,3R,4S,5R)-2-[4-amino-5-(trifluoromethyl)pyrrolo[2,3-d]pyrimidin-7-yl]-5-(hydroxymethyl)oxolane-3,4-diol
Synonyms
Trifluoromethyl-tubercidin; 1854086-05-7; (2R,3R,4S,5R)-2-[4-amino-5-(trifluoromethyl)pyrrolo[2,3-d]pyrimidin-7-yl]-5-(hydroxymethyl)oxolane-3,4-diol; TFMT?; SCHEMBL17406905; RSOXZOFDCJMRMK-IOSLPCCCSA-N; NSC793694; NSC-793694;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.9918 mL 14.9589 mL 29.9177 mL
5 mM 0.5984 mL 2.9918 mL 5.9835 mL
10 mM 0.2992 mL 1.4959 mL 2.9918 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us