Asulacrine free base

Alias: Amsalog; Asulacrine isethionate; CI921; CI-921; CI 921; NSC-343499; NSC343499; NSC 343499; SN21407; SN21407; SN 21407;
Cat No.:V56688 Purity: ≥98%
Asulacrine, also known as CI-921; NSC-343499; SN-21407, is a topoisomerase II inhibitor (antagonist) with anti-tumor properties.
Asulacrine free base Chemical Structure CAS No.: 80841-47-0
Product category: Others 11
This product is for research use only, not for human use. We do not sell to patients.
Size Price
100mg
250mg
500mg
Other Sizes

Other Forms of Asulacrine free base:

  • Amsalog
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Asulacrine, also known as CI-921; NSC-343499; SN-21407, is a topoisomerase II inhibitor (antagonist) with anti-tumor properties. Asulacrine inhibits topoisomerase II, thereby blocking DNA replication and RNA and protein synthesis.
Biological Activity I Assay Protocols (From Reference)
References
1: Jin Y, Wu Z, Wu C, Zi Y, Chu X, Liu J, Zhang W. Size-adaptable and ligand (biotin)-sheddable nanocarriers equipped with avidin scavenging technology for deep tumor penetration and reduced toxicity. J Control Release. 2020 Apr 10;320:142-158. doi: 10.1016/j.jconrel.2020.01.040. Epub 2020 Jan 21. PMID: 31978442. 2: Zhang W, Li C, Jin Y, Liu X, Wang Z, Shaw JP, Baguley BC, Wu Z, Liu J. Multiseed liposomal drug delivery system using micelle gradient as driving force to improve amphiphilic drug retention and its anti-tumor efficacy. Drug Deliv. 2018 Nov;25(1):611-622. doi: 10.1080/10717544.2018.1440669. PMID: 29493300; PMCID: PMC6058678. 3: Jin Y, Wu Z, Li C, Zhou W, Shaw JP, Baguley BC, Liu J, Zhang W. Optimization of Weight Ratio for DSPE-PEG/TPGS Hybrid Micelles to Improve Drug Retention and Tumor Penetration. Pharm Res. 2018 Jan 4;35(1):13. doi: 10.1007/s11095-017-2340-y. PMID: 29302821. 4: Afzal A, Sarfraz M, Wu Z, Wang G, Sun J. Integrated scientific data bases review on asulacrine and associated toxicity. Crit Rev Oncol Hematol. 2016 Aug;104:78-86. doi: 10.1016/j.critrevonc.2016.05.013. Epub 2016 May 26. PMID: 27321375. 5: Zang X, Zhang J, Zhou Y, Chen Q, Peng Y, Sun J, Liu J, Liu W, Wang G, Zhou F. Quantitative determination of intracellular Asulacrine in MCF-7 breast cancer cells by liquid chromatography-mass spectrometry and its application to cellular pharmacokinetic studies of P188 modified liposomes. Biomed Chromatogr. 2016 Dec;30(12):1908-1914. doi: 10.1002/bmc.3762. Epub 2016 Jul 5. PMID: 27187844. 6: Afzal A, Zhong Y, Sarfraz M, Peng Y, Sheng L, Wu Z, Sun J, Wang G. Identification and characterization of in vivo metabolites of asulacrine using advanced mass spectrophotometry technique in combination with improved data mining strategy. J Chromatogr A. 2016 Apr 29;1444:74-85. doi: 10.1016/j.chroma.2016.03.068. Epub 2016 Mar 26. PMID: 27040513. 7: Zhang W, Falconer JR, Baguley BC, Shaw JP, Kanamala M, Xu H, Wang G, Liu J, Wu Z. Improving drug retention in liposomes by aging with the aid of glucose. Int J Pharm. 2016 May 30;505(1-2):194-203. doi: 10.1016/j.ijpharm.2016.03.044. Epub 2016 Mar 25. PMID: 27021465. 8: Zhang W, Wang G, See E, Shaw JP, Baguley BC, Liu J, Amirapu S, Wu Z. Post- insertion of poloxamer 188 strengthened liposomal membrane and reduced drug irritancy and in vivo precipitation, superior to PEGylation. J Control Release. 2015 Apr 10;203:161-9. doi: 10.1016/j.jconrel.2015.02.026. Epub 2015 Feb 19. PMID: 25701612. 9: Zhang W, Wang G, Falconer JR, Baguley BC, Shaw JP, Liu J, Xu H, See E, Sun J, Aa J, Wu Z. Strategies to maximize liposomal drug loading for a poorly water- soluble anticancer drug. Pharm Res. 2015 Apr;32(4):1451-61. doi: 10.1007/s11095-014-1551-8. Epub 2014 Oct 30. PMID: 25355460. 10: See E, Zhang W, Liu J, Svirskis D, Baguley BC, Shaw JP, Wang G, Wu Z. Physicochemical characterization of asulacrine towards the development of an anticancer liposomal formulation via active drug loading: stability, solubility, lipophilicity and ionization. Int J Pharm. 2014 Oct 1;473(1-2):528-35. doi: 10.1016/j.ijpharm.2014.07.033. Epub 2014 Jul 28. PMID: 25079434. 11: Ganta S, Paxton JW, Baguley BC, Garg S. Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Int J Pharm. 2009 Feb 9;367(1-2):179-86. doi: 10.1016/j.ijpharm.2008.09.022. Epub 2008 Sep 21. PMID: 18848873. 12: Ganta S, Paxton JW, Baguley BC, Garg S. Development and validation of bioanalytical method for the determination of asulacrine in plasma by liquid chromatography. J Pharm Biomed Anal. 2008 Jan 22;46(2):386-90. doi: 10.1016/j.jpba.2007.09.025. Epub 2007 Oct 2. PMID: 17981420. 13: Bayés M, Rabasseda X, Prous JR. Gateways to clinical trials. Methods Find Exp Clin Pharmacol. 2002 Nov;24(9):615-43. PMID: 12616707. 14: Fyfe D, Raynaud F, Langley RE, Newell DR, Halbert G, Gardner C, Clayton K, Woll PJ, Judson I, Carmichael J. A study of amsalog (CI-921) administered orally on a 5-day schedule, with bioavailability and pharmacokinetically guided dose escalation. Cancer Chemother Pharmacol. 2002 Jan;49(1):1-6. doi: 10.1007/s00280-001-0389-z. PMID: 11855748. 15: Fyfe D, Price C, Langley RE, Pagonis C, Houghton J, Osborne L, Woll PJ, Gardner C, Baguley BC, Carmichael J; Cancer Research Campaing Phase I/II Trials Committee. A phase I trial of amsalog (CI-921) administered by intravenous infusion using a 5-day schedule. Cancer Chemother Pharmacol. 2001 Apr;47(4):333-7. doi: 10.1007/s002800000216. PMID: 11345650. 16: Finlay GJ, Baguley BC. Effects of protein binding on the in vitro activity of antitumour acridine derivatives and related anticancer drugs. Cancer Chemother Pharmacol. 2000;45(5):417-22. doi: 10.1007/s002800051011. PMID: 10803926. 17: Finlay GJ, Atwell GJ, Baguley BC. Inhibition of the action of the topoisomerase II poison amsacrine by simple aniline derivatives: evidence for drug-protein interactions. Oncol Res. 1999;11(6):249-54. PMID: 10691026. 18: Kettle AJ, Robertson IG, Palmer BD, Anderson RF, Patel KB, Winterbourn CC. Oxidative metabolism of amsacrine by the neutrophil enzyme myeloperoxidase. Biochem Pharmacol. 1992 Nov 3;44(9):1731-8. doi: 10.1016/0006-2952(92)90066-r. PMID: 1333205. 19: Sklarin NT, Wiernik PH, Grove WR, Benson L, Mittelman A, Maroun JA, Stewart JA, Robert F, Doroshow JH, Rosen PJ, et al. A phase II trial of CI-921 in advanced malignancies. Invest New Drugs. 1992 Nov;10(4):309-12. doi: 10.1007/BF00944186. PMID: 1487405. 20: Robertson IG, Palmer BD, Paxton JW, Shaw GJ. Differences in the metabolism of the antitumour agents amsacrine and its derivative CI-921 in rat and mouse. Xenobiotica. 1992 Jun;22(6):657-69. doi: 10.3109/00498259209053128. PMID: 1441589.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H24N4O4S
Molecular Weight
464.54
Exact Mass
464.15
Elemental Analysis
C, 62.05; H, 5.21; N, 12.06; O, 13.78; S, 6.90
CAS #
80841-47-0
Related CAS #
80841-48-1 (isethionate);80841-47-0;
SMILES
O=C(C1=CC=CC2=C(NC3=CC=C(NS(=O)(C)=O)C=C3OC)C4=CC=CC(C)=C4N=C12)NC
InChi Key
TWHSQQYCDVSBRK-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H24N4O4S/c1-14-7-5-8-16-21(14)27-23-17(9-6-10-18(23)24(29)25-2)22(16)26-19-12-11-15(13-20(19)32-3)28-33(4,30)31/h5-13,28H,1-4H3,(H,25,29)(H,26,27)
Chemical Name
9-((2-methoxy-4-(methylsulfonamido)phenyl)amino)-N,5-dimethylacridine-4-carboxamide
Synonyms
Amsalog; Asulacrine isethionate; CI921; CI-921; CI 921; NSC-343499; NSC343499; NSC 343499; SN21407; SN21407; SN 21407;
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1527 mL 10.7633 mL 21.5267 mL
5 mM 0.4305 mL 2.1527 mL 4.3053 mL
10 mM 0.2153 mL 1.0763 mL 2.1527 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top