Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
Leishmania Plasmodium
|
---|---|
ln Vitro |
Amphotericin B interacts with cholesterol, the primary sterol found in mammalian membranes, limiting the drug's utility because of its comparatively high toxicity. In the subphase, amphotericin B is distributed either as a highly aggregated form or as a pre-micellar state[4]. B only eliminates unicellular Leishmania promastigotes (LPs) upon the formation of aqueous holes that are permeable to tiny cations and anions. A polarization potential is induced by amphotericin B (0.1 mM) in liposomes loaded with KCl and suspended in an iso-osmotic sucrose solution, signifying K+ leakage. The negative membrane potential virtually completely collapses when amphotericin B (0.05 mM) is added, showing Na+ penetration into the cells[3].
|
ln Vivo |
In the hamster scrapie model, amphotericin B causes the incubation period to be extended and the buildup of PrPSc to be reduced. In mice suffering from transmissible subacute spongiform encephalopathies (TSSE), amphotericin B significantly lowers PrPSc levels[4]. Amphotericin B directly affects Plasmodium falciparum and has an impact on parasitemia, hostsurvival in murine malaria, and the eryptosis of infected erythrocytes. In mice infected with Plasmodium berghei, amphotericin B tends to postpone the development of parasitemia and considerably postpones host death[5].
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
The pharmacokinetics of amphotericin B vary substantially depending on whether the drug is administered as conventional amphotericin B (formulated with sodium desoxycholate), amphotericin B cholesteryl sulfate complex, amphotericin B lipid complex, or amphotericin B liposomal, and pharmacokinetic parameters reported for one amphotericin B formulation should not be used to predict the pharmacokinetics of any other amphotericin B formulation. Amphotericin B is poorly absorbed from the GI tract and must be given parenterally to treat systemic fungal infections. In one study, immediately after completion of iv infusion of 30 mg of amphotericin B (administered over a period of several hours), average peak serum concentrations were about 1 ug/ml; when the dose was 50 mg, average peak serum concentrations were approximately 2 ug/ml. Immediately after infusion, no more than 10% of the amphotericin B dose can be accounted for in serum. Average minimum serum concentrations (recorded just prior to the next drug infusion) of approximately 0.4 ug/ml have been reported when doses of 30 mg were given daily or when doses of 60 mg were given every other day. Information on the distribution of amphotericin B is limited, although distribution is apparently multicompartmental. The volume of distribution of the drug following administration of conventional amphotericin B has been reported to be 4 L/kg; the volume of distribution at steady state after administration of amphotericin B cholesteryl sulfate is reported to be 3.8-4.1 L/kg. Amphotericin B concentrations attained in inflamed pleura, peritoneum, synovium, and aqueous humor following IV administration of conventional amphotericin B reportedly are about 60% of concurrent plasma concentrations; the drug also is distributed into vitreous humor, pleural, pericardial, peritoneal, and synovial fluid. Amphotericin B reportedly crosses the placenta and low concentrations are attained in amniotic fluid. Following IV administration of conventional amphotericin B, CSF concentrations of the drug are approximately 3% of concurrent serum concentrations. To achieve fungistatic CSF concentrations, the drug must usually be administered intrathecally. In patients with meningitis, intrathecal administration of 0.2-0.3 mg of conventional amphotericin B via a subcutaneous reservoir has produced peak CSF concentrations of 0.5-0.8 ug/mL; 24 hours after the dose, CSF concentrations were 0.11-0.29 ug/mL. Amphotericin B is removed from the CSF by arachnoid villi and appears to be stored in the extracellular compartment of the brain, which may act as a reservoir for the drug. For more Absorption, Distribution and Excretion (Complete) data for AMPHOTERICIN B (14 total), please visit the HSDB record page. Biological Half-Life Amphotericin B cholesteryl sulfate complex has a distribution half-life of 3.5 minutes and an elimination half-life of 27.5-28.2 hours. /Amphotericin B cholesteryl sulfate complex/ Following IV administration of conventional amphotericin B in patients whose renal function is normal prior to therapy, the initial plasma half-life is approximately 24 hours. After the first 24 hours, the rate at which amphotericin B is eliminated decreases and an elimination half-life of approximately 15 days has been reported. Elimination, half life: Neonates: Variable (range, 18 to 62.5 hours). Children: Variable (range, 5.5 to 40.3 hours). Adults: Approximately 24 hours. Terminal half life: Approximately 15 days. NOTE: There is large interindividual variation among neonates in the elimination of amphotericin B. Amphotericin B may persist in the circulation of neonates for up to 17 days after it has been discontinued. . The half life of elimination of amphotericin B from the lungs /of rats/ was 4.8 days according to serial sacrifices done after a single dose of 3.2 mg of aerosol doses of amphotericin B per kg. |
Toxicity/Toxicokinetics |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation Although no information exists on the milk excretion of amphotericin B, it is highly protein bound, has a large molecular weight, is virtually unabsorbed orally and has been use directly in the mouths of infants; therefore, most reviewers consider it acceptable to use in nursing mothers. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. |
References | |
Additional Infomation |
(1R,3S,5R,6R,9R,11R,15S,16R,17R,18S,33R,35S,36R,37S)-33-[(2R,3S,4S,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trimethyl-13-oxo-14,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid has been reported in Trichoderma brevicompactum, Trichoderma virens, and other organisms with data available.
Macrolide antifungal antibiotic produced by Streptomyces nodosus obtained from soil of the Orinoco river region of Venezuela. See also: Amphotericin B (annotation moved to). Mechanism of Action Amphotericin B usually is fungistatic in action at concentrations obtained clinically, but may be fungicidal in high concentrations or against very susceptible organisms. Amphotericin B exerts its antifungal activity principally by binding to sterols (e.g., ergosterol) in the fungal cell membrane. As a result of this binding, the cell membrane is no longer able to function as a selective barrier and leakage of intracellular contents occurs. Cell death occurs in part as a result of permeability changes, but other mechanisms also may contribute to the in vivo antifungal effects of amphotericin B against some fungi. Amphotericin B is not active in vitro against organisms that do not contain sterols in their cell membranes (eg, bacteria). Binding to sterols in mammalian cells (such as certain kidney cells and erythrocytes) may account for some of the toxicities reported with conventional amphotericin B therapy. At usual therapeutic concentrations of amphotericin B, the drug does not appear to hemolyze mature erythrocytes, and the anemia seen with conventional IV amphotericin B therapy may result from the action of the drug on actively metabolizing and dividing erythropoietic cells. ...Nephrotoxicity associated with conventional IV amphotericin B appears to involve several mechanisms, including a direct vasoconstrictive effect on renal arterioles that reduces glomerular and renal tubular blood flow and a lytic action on cholesterol-rich lysosomal membranes of renal tubular cells. ... |
Molecular Formula |
C47H79NO20
|
---|---|
Molecular Weight |
978.12
|
CAS # |
1202017-46-6
|
Related CAS # |
Amphotericin B;1397-89-3;Amphotericin B-13C6
|
PubChem CID |
14956
|
Appearance |
Deep yellow prisms or needles from n,n-dimethylformamide
YELLOW TO ORANGE POWDER |
Melting Point |
170 °C (gradual decomposition)
|
Hydrogen Bond Donor Count |
12
|
Hydrogen Bond Acceptor Count |
18
|
Rotatable Bond Count |
3
|
Heavy Atom Count |
65
|
Complexity |
1670
|
Defined Atom Stereocenter Count |
19
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.0224 mL | 5.1118 mL | 10.2237 mL | |
5 mM | 0.2045 mL | 1.0224 mL | 2.0447 mL | |
10 mM | 0.1022 mL | 0.5112 mL | 1.0224 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.