Size | Price | Stock | Qty |
---|---|---|---|
50mg |
|
||
Other Sizes |
|
ADME/Pharmacokinetics |
Metabolism / Metabolites
Alkyl-substituted polycyclic aromatic hydrocarbons may be metabolized to highly reactive benzylic sulfuric acid esters via benzylic hydroxylation and subsequent sulfonation. We have studied the benzylic hydroxylation of 1-methylpyrene (MP), a hepatocarcinogen in rodents, and 1-ethylpyrene (EP), whose benzylic hydroxylation would produce a secondary alcohol (alpha-HEP), in contrast to the primary alcohol (alpha-HMP) formed from MP. The hydrocarbons were incubated with hepatic microsomal preparations from humans and rats, as well as with V79-derived cell lines engineered for the expression of individual cytochrome P450 (CYP) forms from human (1A1, 1A2, 1B1, 2A6, 2E1, 3A4) and rat (1A1, 1A2, 2B1). All microsomal systems and CYP-expressing cell lines used, but not CYP-deficient V79 cells, showed biotransformation of both hydrocarbons. Formation of the benzylic alcohol was detected in each case. alpha-HMP and its oxidation product, 1-pyrenylcarboxylic acid (COOH-P), accounted for a major part of the total amount of the metabolites formed from MP in the presence of human liver microsomes (38-64%) and cells expressing human 3A4, 2E1 or 1B1 (80-85%). Likewise, cells expressing human 1A1 showed a higher contribution of alpha-HMP and COOH-P to the total metabolites (45%) than cells expressing the orthologous enzyme of the rat (3%). EP was metabolized at a higher rate and with modified regioselectivity compared with MP, although omega-hydroxylation of the side chain was not detected with the cell lines and only accounted for a small percent of the biotransformation by the microsomal preparations. The highest contributions of alpha-HEP to the total metabolites from EP were detected with the cells expressing human 1A1, 1B1 and 3A4 (38-51%). alpha-HEP accounted for 16% of the metabolites formed in the presence of human hepatic microsomes. Thus, benzylic hydroxylation is a major initial step in the metabolism of MP and EP. This pathway appears to be even more important in humans than in rats. Previously, we had shown that the second step of the activation, the sulfonation of alpha-HMP and alpha-HEP, is also efficiently catalysed by various forms of human sulfotransferases. 1-Methylpyrene, an alkylated polycyclic aromatic hydrocarbon and environmental carcinogen, is activated by side-chain hydroxylation to 1-hydroxymethylpyrene (1-HMP) and subsequent sulfo conjugation to the DNA-reactive 1-sulfooxymethylpyrene. In addition to the bioactivation, processes of metabolic detoxification and transport greatly influence the genotoxicity of 1-methylpyrene. For a better understanding of 1-HMP detoxification in vivo we studied urinary and fecal metabolites in rats following intraperitoneal doses of 19.3 mg 1-HMP/kg body weight (5 rats) or the same dose containing 200?Ci [(14)C]1-HMP/kg body weight (2 rats). After 48h, 48.0% (rat 1) and 29.1% (rat 2) of the radioactivity was recovered as 1-HMP in the feces. Six major metabolites were observed by UV and on-line radioactivity detection in urine samples and feces after HPLC separation. The compounds were characterized by mass spectrometry, (1)H NMR and (1)H-(1)H COSY NMR spectroscopy, which allowed assigning tentative molecular structures. Two prominent metabolites, 1-pyrene carboxylic acid (M-6) and the acyl glucuronide of 1-pyrene carboxylic acid (M-5) accounted for 17.7% (rat 1) and 25.2% (rat 2) of the overall radioactive dose. Further, we detected the acyl glucuronide of 6-hydroxy-1-pyrene carboxylic acid (M-1) and 8-sulfooxy-1-pyrene carboxylic acid (M-3) together with two regioisomers of M-3 (M-2 and M-4) differing in position of the sulfate group at the pyrene ring. In urine samples, the radioactivity of 1-pyrene carboxylic acid and its five derivatives amounted to 32.4% (rat 1) or 45.5% (rat 2) of the total [(14)C]1-HMP dose. Transformation of nonsubstituted and alkyl-substituted polycyclic aromatic hydrocarbons (PAHs) by the benthic invertebrate Nereis diversicolor was compared in this study. Pyrene and 1-methylpyrene were used as model compounds for nonsubstituted and alkyl-substituted PAHs, respectively. Qualitative and quantitative analyses of metabolites and parent compounds in worm tissue, water, and sediment were performed. Transformation of 1-methylpyrene generated the benzylic hydroxylated phase I product, 1-pyrenecarboxylic acid that comprised 90% of the total metabolites of 1-methylpyrene, and was mainly found in water extracts. We tentatively identified 1-methylpyrene glucuronides and 1-carbonylpyrene glycine as phase II metabolites not previously reported in literature. Pyrene was biotransformed to 1-hydroxypyrene, pyrene-1-sulfate, pyrene-1-glucuronide, and pyrene glucoside sulfate, with pyrene-1-glucuronide as the most prominent metabolite. Transformation of 1-methylpyrene (21% transformed) was more than 3 times as efficient as pyrene transformation (5.6% transformed). Because crude oils contain larger amounts of C?-C?-substituted PAHs than nonsubstituted PAHs, the rapid and efficient transformation of sediment-associated 1-methylpyrene may result in a high exposure of water-living organisms to metabolites of alkyl-substituted PAHs, whose toxicities are unknown. ... The common polycyclic aromatic hydrocarbon 1-methylpyrene is hepatocarcinogenic in the newborn mouse assay. In vitro studies showed that it is metabolically activated via benzylic hydroxylation and sulphation to a reactive ester, which forms benzylic DNA adducts, N(2)-(1-methylpyrenyl)-2'-deoxyguanosine (MPdG) and N(6)-(1-methylpyrenyl)-2'-deoxyadenosine (MPdA). Formation of these adducts was also observed in animals treated with the metabolites, 1-hydroxymethylpyrene and 1-sulphooxymethylpyrene (1-SMP), whereas corresponding data are missing for 1-methylpyrene. In the present study, we treated mice with 1-methylpyrene and subsequently analyzed blood serum for the presence of the reactive metabolite 1-SMP and tissue DNA for the presence of MPdG and MPdA adducts. We used wild-type mice and a mouse line transgenic for human sulphotransferases (SULT) 1A1 and 1A2, males and females. All analyses were conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry, for the adducts with isotope-labelled internal standards. 1-SMP was detected in all treated animals. Its serum level was higher in transgenic mice than in the wild-type (p < 0.001). Likewise, both adducts were detected in liver, kidney and lung DNA of all exposed animals. The transgene significantly enhanced the level of each adduct in each tissue of both sexes (p < 0.01-0.001). Adduct levels were highest in the liver, the target tissue of carcinogenesis, in each animal model used. MPdG and MPdA adducts were also observed in rats treated with 1-methylpyrene. Our findings corroborate the hypothesis that 1-SMP is indeed the ultimate carcinogen of 1-methylpyrene and that human SULT are able to mediate the terminal activation in vivo. For more Metabolism/Metabolites (Complete) data for 1-Methylpyrene (6 total), please visit the HSDB record page. |
---|---|
Toxicity/Toxicokinetics |
Toxicity Summary
IDENTIFICATION AND USE: 1-Methylpyrene (1-MP) is a polynuclear aromatic hydrocarbon. HUMAN EXPOSURE AND TOXICITY: A Chinese hamster V79-derived cell line expressing both human CYP2E1 and human SULT1A1 was used to investigate the ability of 1-MP to induce cytotoxicity, micronuclei and Hprt gene mutations. 1-MP induced micronuclei in V79-hCYP2E1-hSULT1A1 cells in a concentration-dependent manner; however, it was inactive in V79 cells. It caused an increase in Hprt mutant frequency in V79-hCYP2E1-hSULT1A1 cells, bur not in V79 cells. The results suggest that human CYP2E1 and SULT1A1 cooperate to activate 1-MP and cause genotoxicity in mammalian cells. 1-methylpyrene or perylene, individually or when combined, significantly upregulated IL-1alpha and IL-6 secretion from human skin keratinocytes. 1-methylpyrene also exerted a cytotoxic effect on human keratinocytes. ANIMAL STUDIES: 1-MP was inactive in Chinese hamster V79-derived cell line without metabolic activation. Modification of adenine residues by 1-MP caused termination of DNA replication by E. coli DNA polymerase I (Klenow fragment) in vitro at the position opposite the MP adduct and at the preceding base. |
References |
|
Additional Infomation |
Plates (in ethanol) or brown-green powder. (NTP, 1992)
1-Methylpyrene is a member of pyrenes. |
Molecular Formula |
C17H12
|
---|---|
Molecular Weight |
216.2772
|
Exact Mass |
216.093
|
CAS # |
2381-21-7
|
PubChem CID |
16932
|
Appearance |
Light yellow to yellow solid powder
|
Density |
1.2±0.1 g/cm3
|
Boiling Point |
387.4±9.0 °C at 760 mmHg
|
Melting Point |
72-74 °C(lit.)
|
Flash Point |
178.9±12.8 °C
|
Vapour Pressure |
0.0±0.4 mmHg at 25°C
|
Index of Refraction |
1.816
|
LogP |
5.63
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
0
|
Rotatable Bond Count |
0
|
Heavy Atom Count |
17
|
Complexity |
294
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
KBSPJIWZDWBDGM-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C17H12/c1-11-5-6-14-8-7-12-3-2-4-13-9-10-15(11)17(14)16(12)13/h2-10H,1H3
|
Chemical Name |
1-methylpyrene
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: This product requires protection from light (avoid light exposure) during transportation and storage. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~4.35 mg/mL (~20.11 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 4.6236 mL | 23.1182 mL | 46.2364 mL | |
5 mM | 0.9247 mL | 4.6236 mL | 9.2473 mL | |
10 mM | 0.4624 mL | 2.3118 mL | 4.6236 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.