Tariquidar (XR9576)

Alias: XR9576; D06008; XR 9576; D 06008; XR-9576;D-06008
Cat No.:V1295 Purity: ≥98%
Tariquidar (formerly XR9576;D06008;XR-9576;D-06008) is a potent and selective noncompetitive inhibitor of P-glycoprotein (P-gp) with potential antineoplastic activity.
Tariquidar (XR9576) Chemical Structure CAS No.: 206873-63-4
Product category: P-gp
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Tariquidar (XR9576):

  • Tariquidar methanesulfonate hydrate (XR9576)
  • Tariquidar dihydrochloride (XR9576 dihydrochloride)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Tariquidar (formerly XR9576; D06008; XR-9576; D-06008) is a potent and selective noncompetitive inhibitor of P-glycoprotein (P-gp) with potential antineoplastic activity. It inhibits P-gp with a Kd of 5.1 nM in CHrB30 cell line, it reverses drug resistance in MDR cell Lines. Tariquidaris is currently undergoing research as an adjuvant against multidrug resistance in cancer. Tariquidar non-competitively binds to the p-glycoprotein transporter, thereby inhibiting transmembrane transport of anticancer drugs. Inhibition of transmembrane transport may result in increased intracellular concentrations of an anticancer drug, thereby augmenting its cytotoxicity.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Tariquidar (XR9576) increases the steady-state accumulation of P-gp, making it a potent modulator of P-gp-mediated transport of [3H]-Vinblastine and [3H]-Paclitaxel. The levels of P-gp observed in AuxB1 cells (EC50=487±50 nM) are not required for the cytotoxic effects observed in CHrB30 cells. [3H]-Tariquidar has the strongest affinity (Kd=5.1±0.9 nM, n=7) and a binding capacity (Bmax) of 275±15 pmol/mg membrane protein when it comes to CHrB30 membranes. The modulator Tariquidar (EC50=487±50 nm) increased the accumulation of [3H]-vinblastine in a dose-dependent manner when compared to the parental cell line. With an effective IC50 value of 43±9 nM, the MDR modulator Tariquidar can inhibit 60–70% of vanadate-sensitive ATPase activity[1]. Several medications, such as doxorubicin, paclitaxel, etoposide, and vincristine, are made more cytotoxic by tiriquidar (XR9576); in the presence of 25–80 nM XR9576, resistance is completely reversed. Strong photoaffinity labeling of P-gp by [3H]Azidopine is inhibited by tariquidar, suggesting a direct interaction with the protein [2].
ln Vivo
In mice with intrinsically resistant MC26 colon cancers, coadministration of Tariquidar (XR9576) at a dose of 2.5–4.0 mg/kg maximally increased the anticancer efficacy of doxorubicin without appreciably increasing toxicity was noted. Moreover, in nude mouse xenografts of two highly resistant MDR human cancers (2780AD, H69/LX4), coadministration with Tariquidar (6–12 mg/kg po) completely restored the efficacy of paclitaxel, etoposide, and vincristine Antitumor activity. Additionally, when doxorubicin is subcutaneously injected in vivo against MC26 tumors, tartiquidar greatly increases its anti-tumor effectiveness [2].
Animal Protocol
Dissolved in5% (w/v) D-( 1)-glucose (dextrose) solution; 8 mg/kg ; Coadministration of Tariquidar (p.o.) with doxorubicin (5 mg/kg, i.v.)
Murine colon carcinoma xenografts MC26
References
[1]. Martin C, et al. The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br J Pharmacol, 1999, 128(2), 403-411.
[2]. Mistry P, et al. In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res, 2001, 61(2), 749-758.
[3]. Zimmermann ES, et al. Simultaneous Semimechanistic Population Analyses of Levofloxacin in Plasma, Lung, and Prostate To Describe the Influence of Efflux Transporters on Drug Distribution following Intravenous and Intratracheal Administration. Antimicrob Agents Chemother. 2015 Nov 30;60(2):946-54.
[4]. Kao YH, et al. Regulation of P-glycoprotein expression in brain capillaries in Huntington's disease and its impact on brain availability of antipsychotic agents risperidone and paliperidone. J Cereb Blood Flow Metab. 2016 Aug;36(8):1412-23.
[5]. Matzneller P, et al. Pharmacokinetics of the P-gp Inhibitor Tariquidar in Rats After Intravenous, Oral, and Intraperitoneal Administration. Eur J Drug Metab Pharmacokinet. 2018 Apr 3
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C38H38N4O6
Molecular Weight
646.73
CAS #
206873-63-4
Related CAS #
Tariquidar methanesulfonate, hydrate;625375-83-9;Tariquidar dihydrochloride;1992047-62-7
SMILES
O(C([H])([H])[H])C1=C(C([H])=C2C(=C1[H])C([H])([H])N(C([H])([H])C([H])([H])C1C([H])=C([H])C(=C([H])C=1[H])N([H])C(C1=C([H])C(=C(C([H])=C1N([H])C(C1C([H])=NC3=C([H])C([H])=C([H])C([H])=C3C=1[H])=O)OC([H])([H])[H])OC([H])([H])[H])=O)C([H])([H])C2([H])[H])OC([H])([H])[H]
Synonyms
XR9576; D06008; XR 9576; D 06008; XR-9576;D-06008
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 52 mg/mL (80.4 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
Solubility (In Vivo)
30% propylene glycol, 5% Tween 80, 65% D5W: 30 mg/mL
 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.5462 mL 7.7312 mL 15.4624 mL
5 mM 0.3092 mL 1.5462 mL 3.0925 mL
10 mM 0.1546 mL 0.7731 mL 1.5462 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Tariquidar
    The effect of modulator on the steady-state accumulation of [3H]-vinblastine (100 nM) and [3H]-paclitaxel (1 μM) was measured in CHrB30 cells at 37°C as described in Methods.Br J Pharmacol.1999 Sep;128(2):403-11.
  • Tariquidar
    The effect of XR9576, GF120918, XR9051 and vanadate on the ATPase activity of P-gp-containing CHrB30 membranes (1 μg).Br J Pharmacol.1999 Sep;128(2):403-11.
  • Tariquidar
    Saturation isotherms of [3H]-XR9576, [3H]-vinblastine and [3H]-paclitaxel binding to CHrB30 membranes.Br J Pharmacol.1999 Sep;128(2):403-11.
  • Tariquidar

  • Tariquidar

  • Tariquidar

Contact Us Back to top