yingweiwo

Repaglinide (AG-EE 623ZW)

Alias: AG-EE-623 ZW;AG-EE-388 ZW; AG-EE623 ZW; AG-EE 388 ZW; AG-EE388 ZW; AG-EE-623 ZW, Prandin, GlucoNorm, Surepost, NovoNorm
Cat No.:V1675 Purity: ≥98%
Repaglinide (AG-EE388 ZW; AG-EE-623 ZW, Prandin, GlucoNorm, Surepost, NovoNorm)is a potent and short-acting potassium channel blocker with antidiabetic activity.
Repaglinide (AG-EE 623ZW)
Repaglinide (AG-EE 623ZW) Chemical Structure CAS No.: 135062-02-1
Product category: Potassium Channel
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
250mg
500mg
1g
2g
Other Sizes

Other Forms of Repaglinide (AG-EE 623ZW):

  • Repaglinide D5
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Repaglinide (AG-EE388 ZW; AG-EE-623 ZW, Prandin, GlucoNorm, Surepost, NovoNorm) is a potent and short-acting potassium channel blocker with antidiabetic activity. It can lower blood glucose by stimulating the release of insulin from the pancreas. Repaglinide is an approved antidiabetic drug belonging to the meglitinide class of medications, and was invented in 1983. Repaglinide is an oral medication used for the treatment of type 2 diabetes mellitus. The mechanism of action of repaglinide involves promoting insulin release from β-islet cells of the pancreas.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Repaglinide decreases postprandial glucose levels by boosting the early phase of insulin secretion and increasing the total quantity of insulin secreted[1].
ln Vivo
Repaglinide (AG-EE 623ZW) has a t1/2 of less than an hour and is absorbed very quickly (tmax less than an hour). Repaglinide is also inactivated in the liver and eliminated through the bile in more than 90% of cases. Repaglinide (1 mg/kg po) in a rat model of type 2 diabetes (low-dose streptozotocin) is an effective (P<0.001) insulin-releasing drug.
Animal Protocol
N/A
Rats
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Rapidly and completely absorbed following oral administration. Peak plasma concentrations are observed within 1 hour (range 0.5-1.4 hours). The absolute bioavailability is approximately 56%. Maximal biological effect is observed within 3-3.5 hours and plasma insulin levels remain elevated for 4-6 hours. When a single 2 mg dose of repaglinide is given to healthy subjects, the area under the curve (AUC) is 18.0 - 18.7 (ng/mL/h)^3.
90% eliminated in feces (<2% as unchanged drug), 8% in urine (0.1% as unchanged drug)
31 L following IV administration in healthy individuals
33-38 L/hour following IV administration
Metabolism / Metabolites
Repaglinide is rapidly metabolized via oxidation and dealkylation by cytochrome P450 3A4 and 2C9 to form the major dicarboxylic acid derivative (M2). Further oxidation produces the aromatic amine derivative (M1). Glucuronidation of the carboxylic acid group of repaglinide yields an acyl glucuronide (M7). Several other unidentified metabolites have been detected. Repaglinide metabolites to not possess appreciable hypoglycemic activity.
Repaglinide has known human metabolites that include Repaglinide aromatic amine, 2-ethoxy-4-[2-[[1-[2-(4-hydroxybutylamino)phenyl]-3-methylbutyl]amino]-2-oxoethyl]benzoic acid, 3'-Hydroxy Repaglinide(Mixture of Diastereomers), 2-ethoxy-4-[2-[[3-hydroxy-3-methyl-1-(2-piperidin-1-ylphenyl)butyl]amino]-2-oxoethyl]benzoic acid, and 2-Hydroxy-4-[2-[[3-methyl-1-(2-piperidin-1-ylphenyl)butyl]amino]-2-oxoethyl]benzoic acid.
Biological Half-Life
1 hour
Toxicity/Toxicokinetics
Hepatotoxicity
In several large clinical trials, serum aminotransferase elevations during repaglinide therapy were uncommon and similar in frequency with placebo. All serum enzyme elevations that occurred were asymptomatic and resolved rapidly with stopping therapy. Since its approval and with wide scale use, there have been a small number of reports of clinically apparent liver injury attributed to repaglinide. The time to onset ranged from 2 to 8 weeks and the pattern of serum enzyme elevations was typically cholestatic or mixed. Jaundice and pruritus were prominent. Immunoallergic features and autoantibodies were not present. All published cases have been self-limited, resolving within 1 to 2 months of stopping.
Likelhood score: D (possible rare cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the use of repaglinide during breastfeeding. Repaglinide is a weak acid that is over 98% protein bound, so it is unlikely to pass into breastmilk in clinically important amounts. Monitor breastfed infants for signs of hypoglycemia such as jitteriness, excessive sleepiness, poor feeding, seizures cyanosis, apnea, or hypothermia. If there is concern, monitoring of the breastfed infant's blood glucose is advisable during maternal therapy with repaglinide. However, an alternate drug may be preferred, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
>98% (e.g. to to albumin and α1-acid glycoprotein)
References

[1]. Characteristics of repaglinide and its mechanism of action on insulin secretion in patients with newly diagnosed type-2 diabetes mellitus.Medicine (Baltimore). 2018 Sep;97(38):e12476.

Additional Infomation
Pharmacodynamics
Insulin secretion by pancreatic β cells is partly controlled by cellular membrane potential. Membrane potential is regulated through an inverse relationship between the activity of cell membrane ATP-sensitive potassium channels (ABCC8) and extracellular glucose concentrations. Extracellular glucose enters the cell via GLUT2 (SLC2A2) transporters. Once inside the cell, glucose is metabolized to produce ATP. High concentrations of ATP inhibit ATP-sensitive potassium channels causing membrane depolarization. When extracellular glucose concentrations are low, ATP-sensitive potassium channels open causing membrane repolarization. High glucose concentrations cause ATP-sensitive potassium channels to close resulting in membrane depolarization and opening of L-type calcium channels. The influx of calcium ions stimulates calcium-dependent exocytosis of insulin granules. Repaglinide increases insulin release by inhibiting ATP-sensitive potassium channels in a glucose-dependent manner.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C27H36N2O4
Molecular Weight
452.59
Exact Mass
452.267
CAS #
135062-02-1
Related CAS #
Repaglinide-d5;1217709-85-7
PubChem CID
65981
Appearance
White to off-white solid powder
Density
1.1±0.1 g/cm3
Boiling Point
672.9±55.0 °C at 760 mmHg
Melting Point
129-130.2 °C
Flash Point
360.8±31.5 °C
Vapour Pressure
0.0±2.2 mmHg at 25°C
Index of Refraction
1.568
LogP
4.69
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
10
Heavy Atom Count
33
Complexity
619
Defined Atom Stereocenter Count
1
SMILES
CCOC1=C(C=CC(=C1)CC(=O)N[C@@H](CC(C)C)C2=CC=CC=C2N3CCCCC3)C(=O)O
InChi Key
FAEKWTJYAYMJKF-QHCPKHFHSA-N
InChi Code
InChI=1S/C27H36N2O4/c1-4-33-25-17-20(12-13-22(25)27(31)32)18-26(30)28-23(16-19(2)3)21-10-6-7-11-24(21)29-14-8-5-9-15-29/h6-7,10-13,17,19,23H,4-5,8-9,14-16,18H2,1-3H3,(H,28,30)(H,31,32)/t23-/m0/s1
Chemical Name
2-ethoxy-4-[2-[[(1S)-3-methyl-1-(2-piperidin-1-ylphenyl)butyl]amino]-2-oxoethyl]benzoic acid
Synonyms
AG-EE-623 ZW;AG-EE-388 ZW; AG-EE623 ZW; AG-EE 388 ZW; AG-EE388 ZW; AG-EE-623 ZW, Prandin, GlucoNorm, Surepost, NovoNorm
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 91 mg/mL (201.1 mM)
Water:<1 mg/mL
Ethanol:91 mg/mL (201.1 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.52 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.52 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.52 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2095 mL 11.0475 mL 22.0951 mL
5 mM 0.4419 mL 2.2095 mL 4.4190 mL
10 mM 0.2210 mL 1.1048 mL 2.2095 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Voxelotor CYP and Transporter Cocktail Interaction Study
CTID: NCT05981365
Phase: Phase 1    Status: Completed
Date: 2024-11-22
A Study in Healthy Men and Women to Test Whether BI 1569912 Influences the Amount of Repaglinide, Midazolam and Bupropion in the Blood
CTID: NCT06367153
Phase: Phase 1    Status: Completed
Date: 2024-11-13
A Study in Healthy Men to Test Whether Zongertinib Affects How 3 Other Medicines (Midazolam, Omeprazole, and Repaglinide) Are Taken up and Processed by the Body
CTID: NCT06494761
Phase: Phase 1    Status: Completed
Date: 2024-11-13
A Drug-drug Interaction Study Evaluating the Perpetrator Potential of LY4100511 (DC-853) on Midazolam, Repaglinide, Digoxin, Rosuvastatin in Healthy Participants
CTID: NCT06503679
Phase: Phase 1    Status: Recruiting
Date: 2024-10-03
A Drug-Drug Interaction (DDI) Study of HDM1002 With Repaglinide, Atorvastatin, Digoxin and Rosuvastatin in Healthy Subjects and Overweight Subjects.
A study to examine the influence of repaglinide on the 'incretin effect' and oxidative damage associated with postprandial
CTID: null
Phase: Phase 4    Status: Completed
Date: 2007-01-19
View More

A Phase 3, 24-Week, Multi-Center, Open-Label, Randomized, Controlled Trial Comparing the Efficacy and Safety of Prandial Inhalation of Technosphere®/Insulin in Combination with Metformin or Technosphere®/Insulin Alone Versus 2 Oral Anti-Diabetic Agents (Metformin and a Secretagogue) in Subjects With Type 2 Diabetes Mellitus Sub-Optimally Controlled on Combination Metformin and a Secretagogue
CTID: null
Phase: Phase 3    Status: Completed
Date: 2006-12-01


Perinnöllisten tekijöiden vaikutus diabeteslääkkeisiin 3.
CTID: null
Phase: Phase 4    Status: Ongoing
Date: 2006-08-01
Diabetes therapy to improve body mass index pulmoanry function in cystic fibrosis subjects with abnormal blood glucose
CTID: null
Phase: Phase 4    Status: Completed
Date: 2005-05-09
Efficacy and safety of repaglinide on glycemic control in diabetic patients with chronic renal failure [Diamond study-2]
CTID: UMIN000009166
PhaseNot applicable    Status: Complete: follow-up complete
Date: 2012-10-23
Long-term study on combinational therapy of SMP-508 with dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes mellitus
CTID: jRCT2080221738
Phase:    Status:
Date: 2012-03-09
the efficacy for type 2 Diabetes of Repaglinide taking twice or three times a day
CTID: UMIN000006855
Phase:    Status: Complete: follow-up complete
Date: 2011-12-15

Biological Data
  • Repaglinide

    Inhibition of [3H]glibenclamide binding to SUR1 expressed alone (open circles) or co-expressed with Kir6.2 (filled circles) by repaglinide (a), glibenclamide (b), tolbutamide (c) and nateglinide (d). Br J Pharmacol. 2005 Feb;144(4):551-7.
  • Repaglinide

    Saturation analysis of [3H]glibenclamide (a) and [3H]repaglinide (b) binding to SUR1 expressed alone (open circles) or co-expressed with Kir6.2 (filled circles). Inset: Scatchard analysis of data. Single representative experiments. Br J Pharmacol. 2005 Feb;144(4):551-7.
Contact Us