Pramipexole (SND-919)

Alias: SND 919; SND-919; SND919; Pramipexole; Oprymea; Pramipexol; Pramipexolum
Cat No.:V0046 Purity: ≥98%
Pramipexole (also known as SND 919), an agonist of the Gαi-linked dopamine receptors D2, D3, and D4, is a potent dopamine agonist of the non-ergoline class.
Pramipexole (SND-919) Chemical Structure CAS No.: 104632-26-0
Product category: Dopamine Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
250mg
500mg
1g
2g
5g
10g
Other Sizes

Other Forms of Pramipexole (SND-919):

  • Pramipexole 2HCl
  • Dexpramipexole HCl
  • Pramipexole 2HCl Monohydrate
  • Dexpramipexole
  • Pramipexole-d5 (pramipexole-d5; Mirapa-d5)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

Pramipexole (also known as SND 919), an agonist of the Gαi-linked dopamine receptors D2, D3, and D4, is a potent dopamine agonist of the non-ergoline class. It is used to treat restless legs syndrome (RLS) and Parkinson's disease (PD). Pramipexole exhibits negligible affinity (500-10,000 nM) towards the α2-adrenergic receptor, 5-HT1A, 5-HT1B, and 5-HT1D. A partial/full agonist of the D2S, D2L, D3, and D4 receptor, pramipexole has a Ki of 3.9, 2.2, 0.5, and 5.1 nM for the D2S, D2L, D3, and D4 receptors, respectively.

Biological Activity I Assay Protocols (From Reference)
Targets
D2 Receptor ( Ki = 3.9 nM ); D3 Receptor ( Ki = 0.5 nM ); D4 Receptor ( Ki = 1.3 nM )
ln Vitro

In vitro activity: Pramipexole binds to D1-type receptors with a low affinity, with an IC50 of >50,000 nM[1].
Pramipexole (0.01-10 μM; 72 hours) generates increases in soma size and dendritic arborization that are dose-dependent[3].
Pramipexole areduces levodopa-induced toxicity in mesencephalic cultures[4].

ln Vivo
Pramipexole (0.25-1 mg/kg; i.p.) dramatically lowers the infarction volume in animals[5].
Pramipexole improves neurological recovery[5].
Pramipexole inhibits ischemic cell death through mitochondrial pathways in ischemic stroke[5].
Animal Protocol
Male Wistar rats weighing 250-300 g (16-18 weeks old)
0.25 mg/kg, 1 mg/kg
Intraperitoneal injection
References

[1]. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther, 2006. 28(8): p. 1065-78.

[2]. Blood-brain barrier transport of pramipexole, a dopamine D2 agonist. Life Sci. 2007 Apr 3;80(17):1564-71.

[3]. Ropinirole and Pramipexole Promote Structural Plasticity in Human iPSC-Derived Dopaminergic Neurons via BDNF and mTOR Signaling. Neural Plast. 2018; 2018: 4196961.

[4]. Attenuation of levodopa-induced toxicity in mesencephalic cultures by pramipexole. J Neural Transm (Vienna). 1997;104(2-3):209-28.

[5]. Pramipexole prevents ischemic cell death via mitochondrial pathways in ischemic stroke. Dis Model Mech. 2019 Aug 1; 12(8): dmm033860.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H17N3S
Molecular Weight
211.33
Exact Mass
211.11
Elemental Analysis
C, 56.84; H, 8.11; N, 19.88; S, 15.17
CAS #
104632-26-0
Related CAS #
Pramipexole dihydrochloride; 104632-25-9; Dexpramipexole dihydrochloride; 104632-27-1; Pramipexole dihydrochloride hydrate; 191217-81-9; Dexpramipexole;104632-28-2; Pramipexole-d5; 1217975-28-4
Appearance
Solid powder
SMILES
CCCN[C@H]1CCC2=C(C1)SC(=N2)N
InChi Key
FASDKYOPVNHBLU-ZETCQYMHSA-N
InChi Code
InChI=1S/C10H17N3S/c1-2-5-12-7-3-4-8-9(6-7)14-10(11)13-8/h7,12H,2-6H2,1H3,(H2,11,13)/t7-/m0/s1
Chemical Name
(6S)-6-N-propyl-4,5,6,7-tetrahydro-1,3-benzothiazole-2,6-diamine
Synonyms
SND 919; SND-919; SND919; Pramipexole; Oprymea; Pramipexol; Pramipexolum
HS Tariff Code
2934.99.03.00
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 42~100 mg/mL (198.7~473.2 mM)
Water: <1 mg/mL
Ethanol: ~42 mg/mL (~198.7 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 10 mg/mL (47.32 mM) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 100.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

Solubility in Formulation 2: ≥ 2.5 mg/mL (11.83 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (11.83 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.7319 mL 23.6597 mL 47.3194 mL
5 mM 0.9464 mL 4.7319 mL 9.4639 mL
10 mM 0.4732 mL 2.3660 mL 4.7319 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04759703 Recruiting Drug: Pramipexole
Drug: Placebo
Sleep Disorder
Opioid-use Disorder
Massachusetts General Hospital January 24, 2022 Phase 2
Phase 3
NCT05825235 Recruiting Drug: Pramipexole Anhedonia
Depression
Region Skane April 21, 2023 Phase 3
NCT05355337 Recruiting Drug: Pramipexole
Drug: Placebo
Anhedonia
Depression
Region Skane February 8, 2023 Phase 3
NCT05748600 Recruiting Drug: Dexpramipexole
Dihydrochloride
Drug: Placebo
Eosinophilic Asthma
Asthma; Eosinophilic
Areteia Therapeutics January 30, 2023 Phase 3
NCT05003648 Recruiting Drug: Pramipexole
Drug: Placebo
Adrenoleukodystrophy
Restless Legs Syndrome
Massachusetts General Hospital April 1, 2023 Phase 4
Biological Data
Contact Us Back to top