Levobupivacaine HCl (S-Bupivacaine)

Alias: (S)-(-)-Bupivacaine HCl; Levobupivacaine, Levobupivacaine HCl; Levobupivacaine hydrochloride; Chirocaine, Novabupi
Cat No.:V1651 Purity: ≥98%
Levobupivacaine HCl [also known as (S)-(-)-Bupivacaine; Chirocaine, Novabupi], the hydrochloride salt of Levobupivacaine which is the pure S(-)-enantiomer of bupivacaine, is a reversible neuronal sodium channel inhibitor.
Levobupivacaine HCl (S-Bupivacaine) Chemical Structure CAS No.: 27262-48-2
Product category: Sodium Channel
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
250mg
500mg
1g
10g
Other Sizes

Other Forms of Levobupivacaine HCl (S-Bupivacaine):

  • Levobupivacaine free base
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Levobupivacaine HCl [also known as (S)-(-)-Bupivacaine; Chirocaine, Novabupi], the hydrochloride salt of Levobupivacaine which is the pure S(-)-enantiomer of bupivacaine, is a reversible neuronal sodium channel inhibitor. Levobupivacaine has been used as a long-acting local anesthetic. Levobupivacaine is an amide-type local anaesthetic that acts via blockade of voltage-sensitive ion channels in neuronal membranes, preventing transmission of nerve impulses.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Levobupivacaine (0–4 mM; 24 h) inhibits the viability of HGC27 and SGC7901 cells but has no effect on GES-1 cell viability[2]. Levobupivacaine (2 mM; 24, 48, or 72 h) increases the inhibitory effect of Erastin on the viability of HGC27 and SGC7901 cells; it also raises the levels of iron, Fe2+, and lipid reactive oxygen species[2]. Levobupivacaine (2 mM; 24 h) raises the levels of iron and Fe2+ in HGC27 and SGC7901 cells and improves the expression of miR-489-3p[2].
ln Vivo
Levobupivacaine (40 μmol/kg; IP; once daily for 25 days) increases the buildup of lipid ROS while markedly inhibiting the development of SGC7901 cells[2]. When used in small doses, levofloxacin (5 or 36 mg/kg; IP; single dosage) prolongs the latency to partial seizures and inhibits the onset of generalized seizures; when used in large doses, it shortens the latency to N-methyl-d-aspartate (NMDA)-induced seizures and intensifies seizures[3].
Cell Assay
Cell Viability Assay[2]
Cell Types: GES-1, HGC27 and SGC790
Tested Concentrations: 0, 0.5, 1, 2 and 4 mM
Incubation Duration: 24 h
Experimental Results: Did not affect the viability of normal gastric epithelial GES-1 cell lines but inhibited the viability of HGC27 and SGC7901 cells in a dose-dependent manner.

Cell Viability Assay[2]
Cell Types: HGC27 and SGC7901 (incubated with 5 μM erastin)
Tested Concentrations: 2 mM
Incubation Duration: 24, 48 or 72 h
Experimental Results: Enhanced erastin-induced inhibitory impact on HGC27 and SGC7901 cell viabilities; induced the levels of Fe2+, iron, and lipid ROS.

RT-PCR[2]
Cell Types: HGC27 and SGC7901 (incubated with 5 μM erastin)
Tested Concentrations: 2 mM
Incubation Duration: 24 h
Experimental Results: Enhanced the expression of miR-489-3p in HGC27 and SGC7901 cells, increased the levels of Fe2+ and iron.
Animal Protocol
Animal/Disease Models: CD1 mice (30-35 g ; induced epileptic seizures by injecting with NMDA)[3]
Doses: 5 or 36 mg/kg
Route of Administration: IP; single dosage
Experimental Results: Increased the latency to partial seizures and prevented the occurrence of generalized seizures at 5 mg/kg; decreased the latency to NMDA-induced seizures and increased seizure severity at 36 mg/kg.

Animal/Disease Models: SCID nude mice (6-8 weeks; subcutaneously (sc) injected with 5×106 SGC7901 cells)[2]
Doses: 40 μmol/kg
Route of Administration: IP; one time/day for 25 days
Experimental Results: Dramatically inhibited SGC7901 cell growth, and enhanced the lipid ROS accumulation.
References
[1]. Sanford M, et al. Levobupivacaine: a review of its use in regional anaesthesia and pain management. Drugs. 2010 Apr 16;70(6):761-91.
[2]. Mao SH, et al. Levobupivacaine Induces Ferroptosis by miR-489-3p/SLC7A11 Signaling in Gastric Cancer. Front Pharmacol. 2021 Jun 9;12:681338.
[3]. Marganella C, et al. Comparative effects of levobupivacaine and racemic bupivacaine on excitotoxic neuronal death in culture and N-methyl-D-aspartate-induced seizures in mice. Eur J Pharmacol. 2005 Aug 22;518(2-3):111-5.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H28N2O.HCL
Molecular Weight
324.89
CAS #
27262-48-2
Related CAS #
Levobupivacaine;27262-47-1
SMILES
Cl[H].O=C([C@]1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])N1C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])N([H])C1C(C([H])([H])[H])=C([H])C([H])=C([H])C=1C([H])([H])[H]
InChi Key
SIEYLFHKZGLBNX-NTISSMGPSA-N
InChi Code
InChI=1S/C18H28N2O.ClH/c1-4-5-12-20-13-7-6-11-16(20)18(21)19-17-14(2)9-8-10-15(17)3;/h8-10,16H,4-7,11-13H2,1-3H3,(H,19,21);1H/t16-;/m0./s1
Chemical Name
(2S)-1-butyl-N-(2,6-dimethylphenyl)piperidine-2-carboxamide hydrochloride
Synonyms
(S)-(-)-Bupivacaine HCl; Levobupivacaine, Levobupivacaine HCl; Levobupivacaine hydrochloride; Chirocaine, Novabupi
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:64 mg/mL (197 mM)
Water:64 mg/mL (197 mM)
Ethanol:57 mg/mL (175.4 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 3 mg/mL (9.23 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 3 mg/mL (9.23 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.0780 mL 15.3898 mL 30.7796 mL
5 mM 0.6156 mL 3.0780 mL 6.1559 mL
10 mM 0.3078 mL 1.5390 mL 3.0780 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top