yingweiwo

Diphenhydramine HCl

Alias:

PM 255; Diphenhydramine; Dabylen; PM255; PM-255;Debendrin; Difenhydramine.

Cat No.:V1221 Purity: ≥98%
Diphenhydramine HCl (Dabylen; PM255; PM-255; Debendrin; Difenhydramine), the hydrochloride salt of diphenhydramine, is a 1st-generation histamine H1 receptor antagonist which was approved as an antiemetic for treating various allergic conditions such as rhinitis, urticaria and conjunctivitis.
Diphenhydramine HCl
Diphenhydramine HCl Chemical Structure CAS No.: 147-24-0
Product category: Histamine Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5g
10g
25g
Other Sizes

Other Forms of Diphenhydramine HCl:

  • Diphenhydramine
  • Diphenhydramine-d6 hydrochloride (diphenhydramine d6 hydrochloride)
  • Diphenhydramine-d5 hydrochloride (diphenhydramine d5 hydrochloride (hydrochloride))
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Diphenhydramine HCl (Dabylen; PM255; PM-255; Debendrin; Difenhydramine), the hydrochloride salt of diphenhydramine, is a 1st-generation histamine H1 receptor antagonist which was approved as an antiemetic for treating various allergic conditions such as rhinitis, urticaria and conjunctivitis.

Biological Activity I Assay Protocols (From Reference)
Targets
Histamine H1 receptor
ln Vitro

In vitro activity: Diphenhydramine blocks sodium currents that are sensitive to tetrodotoxin (TTX-S) and resistant to it (TTX-R), with K(d) values of 48 mM and 86 mM, respectively, at a holding potential of -80 mV. Diphenhydramine has little effect on the conductance-voltage curve for TTX-R sodium currents, but it shifts it in the depolarizing direction for TTX-S sodium currents. Diphenhydramine induces a hyperpolarizing shift in the steady-state inactivation curve for both kinds of sodium currents. Diphenhydramine produces a profound use-dependent block when the cells are repeatedly stimulated with high-frequency depolarizing pulses.[1] In CCRF-CEM and Jurkat cell lines, diphenhydramine causes apoptosis in a dose- and time-dependent manner, while at comparable concentrations, imimetidine has no discernible effects. The evaluation of diphenhydramine-induced apoptosis involves morphology analysis, flow cytometry, and cytochrome c release into the cytosol. Diphenhydramine stops human peripheral blood mononuclear cells from proliferating without causing them to undergo apoptosis.[2] The periaqueductal gray neurons' baseline firing is markedly reduced by diphenhydramine (500 nM) without significantly affecting the frequency of postsynaptic potentials. Diphenhydramine blocks the response to neurotensin and tomedial preoptic nucleus stimulation, but at low concentrations it has no effect on baseline firing rate and inhibits periaqueductal gray neurons. [3]

ln Vivo

Cell Assay
Cell Line: PANC-1 cells
Concentration: 0-10 μg/mL
Incubation Time: 24 or 48 h
Result: Increased the expression of Bad and Bax, and decreased Bcl2 level. Decreased the expression of p-AKT (Thr308), p-AKT (Ser 473), p-mTOR (Ser 2448), p-FoxO1 (Ser 256), p-MDM2 (Ser 166), p-NF-ĸB p65 (Ser 536), and p-GSK-3 (Ser 9).
Animal Protocol


ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Diphenhydramine is quickly absorbed after oral administration with maximum activity occurring in approximately one hour. The oral bioavailability of diphenhydramine has been documented in the range of 40% to 60%, and peak plasma concentration occurs about 2 to 3 hours after administration.
The metabolites of diphenhydramine are conjugated with glycine and glutamine and excreted in urine. Only about 1% of a single dose is excreted unchanged in urine. The medication is ultimately eliminated by the kidneys slowly, mainly as inactive metabolites.
Diphenhydramine is widely distributed throughout the body, including the CNS. Following a 50 mg oral dose of diphenhydramine, the volume of distribution is in the range of 3.3 - 6.8 l/kg.
Values for plasma clearance of a 50 mg oral dose of diphenhydramine has been documented as lying in the range of 600-1300 ml/min.
Distribution of diphenhydramine into human body tissues and fluids has not been fully characterized. Following IV administration in rats, highest concentrations of the drug are attained in the lungs, spleen, and brain, with lower concentrations in the heart, muscle, and liver. Following IV administration in healthy adults, diphenhydramine reportedly has an apparent volume of distribution of 188-336 L. Volume of distribution of the drug reportedly is larger in Asian (about 480 L) than white adults.
The drug crosses the placenta and has been detected in milk, although the extent of distribution into milk has not been quantitated.
Following oral administration of a single 100-mg dose in healthy adults, about 50-75% of the dose is excreted in urine within 4 days, almost completely as metabolites and with most urinary excretion occurring within the first 24-48 hours; only about 1% of a single oral dose is excreted unchanged in urine.
Diphenhydramine, given orally, reaches a maximal concentration in the blood in approximately 2 hours, remains there for another 2 hours, then falls exponentially with a plasma elimination half life of approximately 4-8 hours. The drug is distributed widely throughout the body, including the CNS. Little, if any is excreted unchanged in the urine; most appears there as metabolites.
For more Absorption, Distribution and Excretion (Complete) data for DIPHENHYDRAMINE (7 total), please visit the HSDB record page.
Metabolism / Metabolites
Diphenhydramine undergoes rapid and extensive first-pass metabolism. In particular, two successive N-demethylations occur wherein diphenhydramine is demethylated to N-desmethyldiphenhydramine (the N-desmethyl metabolite) and then this metabolite is itself demethylated to N,N-didesmethyldiphenhydramine (the N,N-didesmethyl metabolite). Subsequently, acetyl metabolites like N-acetyl-N-desmethyldiphenhydramine are generated via the amine moiety of the N,N-didesmethyl metabolite. Additionally, the N,N-didesmethyl metabolite also undergoes some oxidation to generate the diphenylmethoxyacetic acid metabolite as well. The remaining percentage of a dose of administered diphenhydramine is excreted unchanged. The metabolites are further conjugated with glycine and glutamine and excreted in urine. Moreover, studies have determined that a variety of cytochrome P450 isoenzymes are involved in the N-demethylation that characterizes the primary metabolic pathway of diphenhydramine, including CYP2D6, CYP1A2, CYP2C9, and CYP2C19. In particular, CYP2D6 demonstrates higher affinity catalysis with the diphenhydramine substrate than the other isoenzymes identified. Consequently, inducers or inhibitors of these such CYP enzymes may potentially affect the serum concentration and incidence and/or severity of adverse effects associated with exposure to diphenhydramine.
Diphenhydramine is rapidly and apparently almost completely metabolized. Following oral administration, the drug apparently undergoes substantial first-pass metabolism in the liver. Diphenhydramine appears to be metabolized principally to diphenylmethoxyacetic acid, which may further undergo conjugation. The drug also undergoes dealkylation to form the N-demethyl and N, N-didemethyl derivatives. Diphenhydramine and its metabolites are excreted principally in urine.
Diphenhydramine is widely used as an over-the-counter antihistamine. However, the specific human cytochrome P450 (P450) isozymes that mediate the metabolism of diphenhydramine in the range of clinically relevant concentrations (0.14-0.77 microM) remain unclear. Therefore, P450 isozymes involved in N-demethylation, a main metabolic pathway of diphenhydramine, were identified by a liquid chromatography-mass spectrometry method developed in our laboratory. Among 14 recombinant P450 isozymes, CYP2D6 showed the highest activity of diphenhydramine N-demethylation (0.69 pmol/min/pmol P450) at 0.5 uM. CYP2D6 catalyzed diphenhydramine N-demethylation as a high-affinity P450 isozyme, the K(m) value of which was 1.12 +/- 0.21 uM. In addition, CYP1A2, CYP2C9, and CYP2C19 were identified as low-affinity components. In human liver microsomes, involvement of CYP2D6, CYP1A2, CYP2C9, and CYP2C19 in diphenhydramine N-demethylation was confirmed by using P450 isozyme-specific inhibitors. In addition, contributions of these P450 isozymes estimated by the relative activity factor were in good agreement with the results of inhibition studies. Although an inhibitory effect of diphenhydramine on the metabolic activity of CYP2D6 has been reported previously, the results of the present study suggest that it is not only a potent inhibitor but also a high-affinity substrate of CYP2D6. Therefore, it is worth mentioning that the sedative effect of diphenhydramine might be caused by coadministration of CYP2D6 substrate(s)/inhibitor(s). In addition, large differences in the metabolic activities of CYP2D6 and those of CYP1A2, CYP2C9, and CYP2C19 could cause the individual differences in anti-allergic efficacy and the sedative effect of diphenhydramine.
Two strains of the filamentous fungus Cunninghamella elegans (ATCC 9245 and ATCC 36112) were grown in Sabouraud dextrose broth and screened for the ability to metabolize the ethanolamine-type antihistamine diphenhydramine. Based on the amount of parent drug recovered after 7 days incubation, both C. elegans strains metabolized approximately 74% of the diphenhydramine, 58% of this being identified as organic extractable metabolites. The organic extractable metabolites were isolated by reversed-phase high-performance liquid chromatography and identified by analyzing their mass and nuclear magnetic resonance spectra. Desorption chemical ionization mass spectrometry (DCIMS) with deuterated ammonia was used to differentiate possible isobaric diphenhydramine metabolites and to probe the mechanisms of ion formation under ammonia DCIMS conditions. C. elegans transformed diphenhydramine by demethylation, oxidation, and N-acetylation. The major metabolites observed were diphenhydramine-N-oxide (3%), N-desmethyldiphenhydramine (30%), N-acetyldidesmethyldiphenhydramine (13%), and N-acetyl-N-desmethyldiphenhydramine (12%). These compounds are known mammalian metabolites of diphenhydramine ... .
Diphenhydramine has known human metabolites that include Diphenhydramine N-glucuronide and N-Desmethyldiphenhydramine.
Hepatic and renal
Route of Elimination: Little, if any, is excreted unchanged in the urine; most appears as the degradation products of metabolic transformation in the liver, which are almost completely excreted within 24 hours.
Half Life: 1-4 hours
Biological Half-Life
The elimination half-life ranges from 2.4-9.3 hours in healthy adults. The terminal elimination half-life is prolonged in liver cirrhosis.
The pharmacokinetics and pharmacodynamics of the H1-receptor antagonist diphenhydramine were studied in 21 fasting subjects divided into three age groups: elderly, (mean age 69.4 +/- 4.3 years), young adults, (mean age 31.5 +/- 10.4 years), and children, (mean age 8.9 +/- 1.7 years). All subjects ingested a single dose of diphenhydramine syrup 1.25 mg/kg. ... The mean serum elimination half-life values for diphenhydramine differed significantly in elderly adults, young adults, and children, with values of 13.5 +/- 4.2 hours, 9.2 +/- 2.5 hours, and 5.4 +/- 1.8 hours being found respectively in each age group. ...
The terminal elimination half-life of diphenhydramine has not been fully elucidated, but appears to range from 2.4-9.3 hours in healthy adults. The terminal elimination half-life reportedly is prolonged in adults with liver cirrhosis.
Toxicity/Toxicokinetics
Toxicity Summary
Diphenhydramine competes with free histamine for binding at HA-receptor sites. This antagonizes the effects of histamine on HA-receptors, leading to a reduction of the negative symptoms brought on by histamine HA-receptor binding.
Toxicity Data
LD50: 500 mg/kg (Oral, Rat) (A308)
Interactions
Concurrent use /of ototoxic medications/ with antihistamines may mask the symptoms of ototoxicity such as tinnitus, dizziness, or vertigo. /Antihistamines/
Concurrent use of monoamine oxidase (MAO) inhibitors with antihistamines may prolong and intensify the anticholinergic and CNS depressant effects of antihistamines; concurrent use is not recommended. /Antihistamines/
Concurrent use /with alcohol or other CNS depression-producing medications/ may potentiate the CNS depressant effects of either these medications or antihistamines; also, concurrent use of maprotiline or tricyclic antidepressants may potentiate the anticholinergic effects of either antihistamines or these medications. /Antihistamines/
Anticholinergic effects may be potentiated when /anticholinergics or other medications with anticholinergic activity/ are used concurrently with antihistamines; patients should be advised to report occurrence of gastrointestinal problems promptly since paralytic ileus may occur with concurrent therapy. /Antihistamines/
For more Interactions (Complete) data for DIPHENHYDRAMINE (8 total), please visit the HSDB record page.
References

[1]. Brain Res . 2000 Oct 27;881(2):190-8.

[2]. Oncol Res . 2004;14(7-8):363-72.

[3]. Neuroscience . 2002;114(4):935-43.

Additional Infomation
Therapeutic Uses
Anesthetics, Local; Anti-Allergic Agents; Antiemetics; Histamine H1 Antagonists; Hypnotics and Sedatives
Antihistamines are most beneficial in the management of nasal allergies. Seasonal allergic rhinitis (e.g., hay fever) and perennial (nonseasonal) allergic rhinitis are benefited more than perennial nonallergic (vasomotor) rhinitis. Orally administered antihistamines generally provide symptomatic relief of rhinorrhea, sneezing, oronasopharyngeal irritation or itching, lacrimation, and red, irritated, or itching eyes associated with the early response to histamine. /Antihistamines; Included in US product labeling/
Antihistamines are often effective in the treatment of allergic dermatoses and other dermatoses associated with histamine release, but effectiveness varies with the causative agent and symptoms may return when the drug is stopped. /Antihistamines; Included in US product labeling/
Antihistamines may provide some benefit in certain asthmatic patients, but the drugs usually are not effective in treating bronchial asthma per se and should not be used in the treatment of severe acute asthma attacks. In addition, antihistamines are not included in the usual recommended regimens for the management of asthma, including long-term control of the disease. /Antihistamines; Included in US product labeling/
For more Therapeutic Uses (Complete) data for DIPHENHYDRAMINE (12 total), please visit the HSDB record page.
Drug Warnings
Numerous side effects ... /incl/ drowsiness, confusion, restlessness, nausea, vomiting, diarrhea, blurring of vision, diplopia, difficulty in urination, constipation, nasal stuffiness, vertigo, palpitation, headache, and insomnia. Other side effects observed were urticaria, drug rash, photosensitivity, hemolytic anemia, hypotension, epigastric distress, anaphylactic shock, tightness of the chest and wheezing, thickening of bronchial secretions, dryness of the mouth, nose and throat and tingling, and heaviness and weakness of the hands.
Like other antihistamines, diphenhydramine should be used with caution in infants and young children and should not be used in premature or full-term neonates Children younger than 6 years of age should receive diphenhydramine only under the direction of a physician. Safety and efficacy of diphenhydramine as a nighttime sleep aid in children younger than 12 years of age have not been established. In addition, children may be more prone than adults to paradoxically experience CNS stimulation rather than sedation when antihistamines are used as nighttime sleep aids. Because diphenhydramine may cause marked drowsiness that may be potentiated by other CNS depressants (e.g., sedatives, tranquilizers), the antihistamine should be used in children receiving one of these drugs only under the direction of a physician.
Prolonged use of antihistamines ... may decrease or inhibit salivary flow, thus contributing to the development of caries, periodontal disease, oral candidiasis, and discomfort. /Antihistamines/
Local necrosis has occurred with subcutaneous or intradermal administration of parenteral diphenhydramine.
For more Drug Warnings (Complete) data for DIPHENHYDRAMINE (18 total), please visit the HSDB record page.
Pharmacodynamics
Diphenhydramine has anti-histaminic (H1-receptor), anti-emetic, anti-vertigo and sedative and hypnotic properties. The anti-histamine action occurs by blocking the spasmogenic and congestive effects of histamine by competing with histamine for H1 receptor sites on effector cells, preventing but not reversing responses mediated by histamine alone. Such receptor sites may be found in the gut, uterus, large blood vessels, bronchial muscles, and elsewhere. Anti-emetic action is by inhibition at the medullary chemoreceptor trigger zone. Anti-vertigo action is by a central antimuscarinic effect on the vestibular apparatus and the integrative vomiting center and medullary chemoreceptor trigger zone of the midbrain.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H22CLNO
Molecular Weight
291.82
Exact Mass
291.138
Elemental Analysis
C, 69.97; H, 7.60; Cl, 12.15; N, 4.80; O, 5.48
CAS #
147-24-0
Related CAS #
Diphenhydramine; 58-73-1; Diphenhydramine-d6 hydrochloride; 1189986-72-8; Diphenhydramine-d5 hydrochloride; 1219795-16-0; 88637-37-0 (citrate); 7491-10-3 (salicylate)
PubChem CID
3100
Appearance
White to off-white solid powder
Density
1.024g/cm3
Boiling Point
343.7ºC at 760 mmHg
Melting Point
168-172 °C
Flash Point
101.5ºC
LogP
4.156
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
6
Heavy Atom Count
19
Complexity
211
Defined Atom Stereocenter Count
0
SMILES
O(C([H])([H])C([H])([H])N(C([H])([H])[H])C([H])([H])[H])C([H])(C1C([H])=C([H])C([H])=C([H])C=1[H])C1C([H])=C([H])C([H])=C([H])C=1[H]
InChi Key
PCHPORCSPXIHLZ-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H21NO.ClH/c1-18(2)13-14-19-17(15-9-5-3-6-10-15)16-11-7-4-8-12-16;/h3-12,17H,13-14H2,1-2H3;1H
Chemical Name
2-benzhydryloxy-N,N-dimethylethanamine;hydrochloride
Synonyms

PM 255; Diphenhydramine; Dabylen; PM255; PM-255;Debendrin; Difenhydramine.

HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 58~100 mg/mL (198.8~342.7 mM)
Water: ~58 mg/mL (~198.8 mM)
Ethanol: ~58 mg/mL (~198.8 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (8.57 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (8.57 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (8.57 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 130 mg/mL (445.48 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.4268 mL 17.1338 mL 34.2677 mL
5 mM 0.6854 mL 3.4268 mL 6.8535 mL
10 mM 0.3427 mL 1.7134 mL 3.4268 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04175834 Active
Recruiting
Drug: antihistamine Multiple Sclerosis
Infusion Reaction
Providence Health & Services February 5, 2020 Phase 3
NCT02037126 Active
Recruiting
Drug: Diphenhydramine
Drug: Psilocybin
Cocaine-Related Disorders University of Alabama at
Birmingham
May 2015 Phase 2
NCT04741139 Active
Recruiting
Drug: Acetaminophen and
Diphenhydramine Only Product
Immune Thrombocytopenia Baylor College of Medicine September 2, 2021 Phase 1
NCT04109885 Active
Recruiting
Drug: Paracervical injection
Drug: prochlorperazine
and diphenhydramine.
(Standard Treatment)
Pain Management
Emergency Department
Christian Fromm, MD September 15, 2020 Phase 2
NCT04805073 Recruiting Drug: Promethazine
Drug: Placebo
Pruritus
Pregnancy Related
University of Florida August 9, 2021 Phase 4
Contact Us