Azeliragon (TTP488; PF-04494700)

Alias: PF-04494700; PF 04494700; PF04494700; Azeliragon; TTP488; TTP-488; TTP 488;
Cat No.:V2883 Purity: ≥98%
Azeliragon (also known as TTP488 and PF-04494700) is a potent and orally bioavailable RAGE (Receptor for Advanced Glycation End products) inhibitor that has the potential for the treatment ofmild-to-moderate Alzheimers disease and cerebral amyloid angiopathy.
Azeliragon (TTP488; PF-04494700) Chemical Structure CAS No.: 603148-36-3
Product category: Beta Amyloid
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of Azeliragon (TTP488; PF-04494700):

  • Azeliragon HCl (TTP488; PF-04494700)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
InvivoChem's Azeliragon (TTP488; PF-04494700) has been cited by 1 publication
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

Azeliragon (also known as TTP488 and PF-04494700) is a potent and orally bioavailable RAGE (Receptor for Advanced Glycation End products) inhibitor that has the potential for the treatment of mild-to-moderate Alzheimer's disease and cerebral amyloid angiopathy. RAGE is a pattern recognition receptor that affects the movement of amyloid (a biomarker for Alzheimer's disease) into the brain. In preclinical studies, azeliragon decreased brain amyloid in mice and improved their performance on behavior tests. Azeliragon has been shown to be involved in adaptive immune responses. It is currently in Phase 3 clinical trial.

Biological Activity I Assay Protocols (From Reference)
Targets
RAGE (receptor for advanced glycation end products)
ln Vitro
Treatment with azeliragon (4 nM; 16 hours) inhibits T cells in wild type (WT) mice, but not T cells with deleted receptors (RAGE-/- mice), nor does it significantly lower IFN-γ production[3].
ln Vivo
Islets were isolated from young prediabetic NOD/LtJ mice and transplanted into NOD mice with spontaneous diabetes; islets were isolated from WT BALB/c mice and transplanted into B6 mice with diabetes. Azeliragon (100 mcg/d; intraperitoneal injection; every day) treatment reduces syngeneic islet graft and islet allograft in NOD and B6 mice[3].
Enzyme Assay
Using serum from uremic pigs with chronic renal insufficiency, our results show that KLF2 expression is suppressed by the uremic milieu and individual uremic solutes in vitro. Specifically, KLF2 expression is significantly decreased in human umbilical vein endothelial cells after treatment with uremic porcine serum or carboxymethyllysine‐modified albumin, an advanced glycation end product (AGE) known to induce endothelial dysfunction. AGE‐mediated suppression of KLF2 is dependent on activation of the receptor for AGE, as measured by small interfering RNA knockdown of the receptor for AGE. Furthermore, KLF2 suppression promotes endothelial dysfunction, because adenoviral overexpression of KLF2 inhibits reactive oxygen species production and leukocyte adhesion in human umbilical vein endothelial cells. In addition, the application of hemodynamic shear stress, prolonged serum dialysis, or treatment with the receptor for AGE antagonist azeliragon (TTP488) is sufficient to prevent KLF2 suppression in vitro. [4]
Cell Assay
Cell Viability Assay[3]
Cell Types: Purified T cells from RAGE-/- or WT B6 mice.
Tested Concentrations: 4 nM
Incubation Duration: 16 hrs (hours)
Experimental Results: Inhibited of WT but not RAGE-/- T cells, and Dramatically decreased the level of IFN-γ.
Animal Protocol
Animal/Disease Models: Prediabetic NOD/LtJ (6-7 week old) mice, NOD mice with spontaneous diabetes, WT balb/c (Bagg ALBino) mouse (8-10 week old ) and B6 mice with diabetes [3].
Doses: 100 mcg/d
Route of Administration: intraperitoneal (ip)injection; every day
Experimental Results: Prolonged islet auto and allograft survival.
References
[1]. Burstein AH, et al. Assessment of Azeliragon QTc Liability Through Integrated, Model-Based Concentration QTc Analysis. Clin Pharmacol Drug Dev. 2019 May;8(4):426-435.
[2]. Bongarzone S, et al. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. J Med Chem. 2017 Sep 14;60(17):7213-7232.
[3]. Chen Y, et al. RAGE ligation affects T cell activation and controls T cell differentiation. J Immunol. 2008 Sep 15;181(6):4272-8.
[4]. J Am Heart Assoc. 2018 Jan; 7(1): e007566.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C32H38CLN3O2
Molecular Weight
532.12
Exact Mass
531.26525
Elemental Analysis
C, 72.23; H, 7.20; Cl, 6.66; N, 7.90; O, 6.01
CAS #
603148-36-3
Related CAS #
1284150-65-7 (2HCl);603148-36-3
Appearance
White to light yellow solid
LogP
8.3
tPSA
39.52
SMILES
CCN(CC)CCCOC1=CC=C(C2=CN(C3=CC=C(OC4=CC=C(Cl)C=C4)C=C3)C(CCCC)=N2)C=C1
InChi Key
KJNNWYBAOPXVJY-UHFFFAOYSA-N
InChi Code
InChI=1S/C32H38ClN3O2/c1-4-7-9-32-34-31(25-10-16-28(17-11-25)37-23-8-22-35(5-2)6-3)24-36(32)27-14-20-30(21-15-27)38-29-18-12-26(33)13-19-29/h10-21,24H,4-9,22-23H2,1-3H3
Chemical Name
3-(4-(2-butyl-1-(4-(4-chlorophenoxy)phenyl)-1H-imidazol-4-yl)phenoxy)-N,N-diethylpropan-1-amine
Synonyms
PF-04494700; PF 04494700; PF04494700; Azeliragon; TTP488; TTP-488; TTP 488;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 10 mM
Water:<1 mg/mL
Ethanol: N/A
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.70 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.70 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (4.70 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8793 mL 9.3964 mL 18.7928 mL
5 mM 0.3759 mL 1.8793 mL 3.7586 mL
10 mM 0.1879 mL 0.9396 mL 1.8793 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
Contact Us Back to top