AMD 3465 hexahydrobromide

Alias: AMD3465 hexahydrobromide; GENZ644494 hexahydrobromide; AMD-3465 6HBr; GENZ-644494 hexahydrobromide; AMD 3465; GENZ 644494 hexahydrobromide
Cat No.:V2749 Purity: ≥98%
AMD3465 hexahydrobromide (AMD-3465; GENZ-644494 6-HBr) is a novel monomacrocyclic antagonist of CXCR4 that has potential anticancer and anti-HIV activity.
AMD 3465 hexahydrobromide Chemical Structure CAS No.: 185991-07-5
Product category: CXCR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of AMD 3465 hexahydrobromide:

  • AMD 3465
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

AMD3465 hexahydrobromide (AMD-3465; GENZ-644494 6-HBr) is a novel monomacrocyclic antagonist of CXCR4 that has potential anticancer and anti-HIV activity. It effectively prevents CXCL12 from binding to SupT1 cells, with an IC50 of 18 nM. With an IC50 of 17 nM, AMD3465 blocks both MAPK phosphorylation and CXCL12-induced calcium signaling in SupT1 cells. However, in U87.CD4.CCR5 cells, AMD3465 was unable to inhibit the intracellular calcium fluxes induced by the CCR5 ligands RANTES, LD78β, and MIP-1β. AMD3465 inhibits the chemotaxis that human T-lymphoid SupT1 cells experience when exposed to CXCL12 and stops U87.CD4 cells from internalizing CXCR4 due to chemokines. Furthermore, AMD3465 exhibits activity against the X4 HIV-1 strains IIIB, NL4.3, RF, and HE, with an IC50 ranging from 6 to 12 nM. With an IC50 of 12.3 nM, AMD3465 inhibits the HIV-2 strains ROD and EHO.

Biological Activity I Assay Protocols (From Reference)
Targets
12G5 mAb-CXCR4 ( IC50 = 1.1 nM ); CXCL12AF647-CXCR4 ( IC50 = 1.7 nM ); X4 HIV-1 (NL4.3) ( IC50 = 121 nM );
X4 HIV-1 (RF) ( IC50 = 1.1 nM ); X4 HIV-1 (HE) ( IC50 = 1.7 nM ); X4 HIV-1 (IIIB) ( IC50 = 121 nM );
X4 HIV-1 (NL4.3AMD3100) ( IC50 = 1.1 nM ); HIV-2 (ROD) ( IC50 = 1.7 nM ); HIV-2 (EHO) ( IC50 = 121 nM )
ln Vitro

In vitro activity: AMD 3465 hexahydrobromide is a potent antagonist of CXCR4 that prevents the binding of 12G5 mAb and CXCL12AF647 to CXCR4, with IC50s of 0.75 nM and 18 nM in SupT1 cells. With an IC50 of 17 nM, AMD 3465 (50 nM) completely inhibits the calcium mobilization induced by CXCL12, but it has no effect on the intracellular calcium fluxes that are induced in U87.CD4.CCR5 cells by the CCR5 ligands RANTES, LD78β, and MIP-1β. AMD 3465 has no effect on viruses that use CCR5 (R5), but it potently inhibits the replication of X4 HIV strains (IC50: 1-10 nM). With an IC50 ranging from 6 to 12 nM, AMD3465 is cytotoxic to the X4 HIV-1 strains IIIB, NL4.3, RF, and HE. The HIV-2 strains ROD and EHO can be suppressed at an IC50 of 12.3 nM[1]. AMD 3465 prevents U87 and Daoy cells from growing in response to CXCL-12. In U87 and Daoy cells, AMD 3465 treatment increases Erk1/2 phosphorylation[2].

ln Vivo
AMD 3465 (2.5 mg/kg/d, s.c. for 5 weeks) notably inhibits the proliferation of Daoy xenografts and U87 GBM[2].
Enzyme Assay
In order to conduct competition binding studies against CXCR4, a concentration range of AMD3465 is incubated for three hours at 4°C in binding buffer (PBS containing pH 7.4, 0.25% BSA, 1 mM CaCl2, and 5 ×105 CCRF-CEM cells) in Millipore DuraporeTM filter plates. Washing with cold 50 mM HEPES and 0.5 M NaCl pH 7.4 removes unbound 125I-SDF-1α. Membranes from CHO-S cells that express recombinant BLT1 are used for the competition binding assay against that protein. The membranes are prepared using mechanical cell lysis, high-speed centrifugation, resuspension in a buffer containing 50 mM HEPES and 5 mM MgCl2, and flash freezing. The assay mixture comprising 50 mM Tris, pH 7.4, 10 mM MgCl2, 10 mM CaCl2, 4 nM LTB4 combined with 1 nM 3H-LTB4, and 8 μg membrane is incubated with AMD3465 for 1 hour at room temperature. Filtration is used to separate the unbound 3H-LTB4 on Millipore Type GF-C filter plates. A Liquid Scintillation Counter (LKB Rackbeta 1209), is used to count the bound radioactivity. MCE has not independently verified these techniques' accuracy. They are merely meant to be used as references.
Cell Assay
After a 24-hour serum starvation period, 1 μg/mL CXCL12, 2.5 ng/mL AMD 3465, 200 μM rolipram, or 10 μM forskolin are administered to astrocytes, granule cells, U87 cells, and Daoy cells. After 24 and 48 hours of treatment, respectively, trypan blue exclusion is used to measure the growth of Daoy and U87 cells in culture[2].
Animal Protocol
Mice: After cells are implanted, mice are imaged at least twice in order to identify those with comparable tumor growth rates. Cohorts of mice with roughly equal tumor bioluminescence are split into equal control and treatment groups two weeks after tumor cell implantation. In AMD 3465 experiments, animals are given sterile PBS or PBS alone through s.c. osmotic pumps that are loaded with 10 mg/mL AMD 3465. The rate of infusion is 50 μg/d, or 0.25 μL/h. In the rolipram or caffeine experiments, 100 μg/g/d of caffeine or 5 μg/g/d of rolipram are given orally to the mice in the treatment groups. Over the course of seven days, daily measurements of each animal's water consumption are used to calculate the drug concentration in the water. The recommended dosage is provided by adjusting concentrations in accordance with water consumption[2].
References

[1]. AMD3465, a monomacrocyclic CXCR4 antagonist and potent HIV entry inhibitor. Biochem Pharmacol. 2005 Sep 1;70(5):752-61.

[2]. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res. 2007 Jan 15;67(2):651-8.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H44BR6N6
Molecular Weight
896.07
Exact Mass
410.32
Elemental Analysis
C, 32.17; H, 4.95; Br, 53.50; N, 9.38
CAS #
185991-07-5
Related CAS #
AMD 3465; 185991-24-6
Appearance
Solid powder
SMILES
C1CNCCNCCCN(CCNC1)CC2=CC=C(C=C2)CNCC3=CC=CC=N3.Br.Br.Br.Br.Br.Br
InChi Key
ARHBIBDGWDRBJH-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H38N6.6BrH/c1-2-13-29-24(5-1)20-28-19-22-6-8-23(9-7-22)21-30-17-4-12-26-15-14-25-10-3-11-27-16-18-30;;;;;;/h1-2,5-9,13,25-28H,3-4,10-12,14-21H2;6*1H
Chemical Name
N-(pyridin-2-ylmethyl)-1-[4-(1,4,8,11-tetrazacyclotetradec-1-ylmethyl)phenyl]methanamine;hexahydrobromide
Synonyms
AMD3465 hexahydrobromide; GENZ644494 hexahydrobromide; AMD-3465 6HBr; GENZ-644494 hexahydrobromide; AMD 3465; GENZ 644494 hexahydrobromide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 2~50 mg/mL (2.2~55.8 mM)
Water: ~98 mg/mL (~109.4 mM)
Ethanol: Insoluble
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (2.79 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (2.79 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

View More

Solubility in Formulation 3: 100 mg/mL (111.60 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.1160 mL 5.5799 mL 11.1598 mL
5 mM 0.2232 mL 1.1160 mL 2.2320 mL
10 mM 0.1116 mL 0.5580 mL 1.1160 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
Contact Us Back to top