Zotarolimus (ABT578; A-179578)

Alias: A 179578; A-179578; A179578; ABT578; ABT-578; ABT 578; Endeavor; Zotarolimus; 42-deoxy-42-(1H-tetrazol-1-yl)-; (42S)-Rapamycin
Cat No.:V0208 Purity: ≥98%
Zotarolimus (also known as ABT-578; A 179578), atetrazole-based and semi-synthetic analog of rapamycin, is ahighly potentimmunosuppressant with the potential to be used for preventing coronary artery restenosis.
Zotarolimus (ABT578; A-179578) Chemical Structure CAS No.: 221877-54-9
Product category: mTOR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
2mg
5mg
10mg
25mg
50mg
Other Sizes

Other Forms of Zotarolimus (ABT578; A-179578):

  • 42-(2-Tetrazolyl)rapamycin
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Zotarolimus (also known as ABT-578; A 179578), a tetrazole-based and semi-synthetic analog of rapamycin, is a highly potent immunosuppressant with the potential to be used for preventing coronary artery restenosis. With an IC50 of 2.8 nM, it prevents FKBP-12 binding. Restenosis, immune, and autoimmune diseases may benefit from its use in treatment. With IC50 values of 2.9 and 2.6 nM, respectively, zotarolimus inhibited the proliferation of smooth muscle cells (SMC) and endothelial cells (EC) in human coronary artery cells. Zotarolimus inhibited Con A-induced human and rat T cell proliferation in peripheral blood mononuclear cells (PBMC) and rat splenocytes with IC50 values of 7.0 and 1337 nM, respectively, in a concentration-dependent manner. In lymphocytes derived from humans or rats, zotarolimus inhibited the human and rat mixed lymphocyte reaction (MLR) with IC50 values of 1.2 and 1465 nM respectively in a concentration-dependent way.

Biological Activity I Assay Protocols (From Reference)
Targets
FKBP-12 (IC50 = 2.8 nM)
ln Vitro
Zotarolimus (ABT-578) is a semi-synthetic analogue of rapamycin, made by substituting a tetrazole ring for the native hydroxyl group at position 42 in rapamycin. With IC50 values of 2.9 nM and 2.6 nM for smooth muscle cell and endothelial cell proliferation inhibition, respectively, zotarolimus is very effective.[1] In terms of its mechanism, zatarolimus is comparable to sirolimus in that it binds to the immunophilin FKBP12 with high affinity and has a similar ability to stop the growth of both human and rat T cells in vitro. With an IC50 of 7.0 nM for human T cells and 1337 nM for rat T cells, respectively, zotarolimus inhibits Con A-induced T cell proliferation. [2]
ln Vivo
In a 28-day, thoroughly studied swine model of coronary artery restenosis, zotarolimus-eluting stents effectively reduce neointima formation. When compared to bare metal stents (15.4% with the Driver stent to 8.1% with the Endeavor stent), zotarolimus appears to be effective at preventing neointimal thickening, lowering late loss from 1.03 to 0.62 mm and lowering TVF by 47%. [1] With respective ED50 values of 1.72, 1.17, and 3.71 mg/kg/day, zotarolimus is effective in preventing adjuvant DTH, EAE, and cardiac allograft rejection. [2]
Enzyme Assay
Following the addition of 50 μL/well of buffer A (2% BSA and 0.2% Tween-20 in D-PBS) for 30–60 min, 96-well microtiter plates are first coated with FKBP-12 CMP-KDO synthetase fusion protein at 10 μg/mL, 100 μL/well for 2-3 h. The following step involves washing the microtiter plates three times with buffer B (0.2% Tween in D-PBS, pH adjusted to 7.4). A-79397 (an FK506 analogue)-alkaline phosphatase conjugate in buffer A is added to each well after 50 μL of buffer A (for maximum), 20 M FK506 in buffer A (for background), or various concentrations of zotarolimus (10 pM-1 M) in buffer A are added to each well. Three washes with buffer B are performed after the microtiter plates have been incubated at room temperature for 2-2.5 hours.
Cell Assay
In vitro tritiated thymidine incorporation is used to assess cell proliferation. The desired density of hCa (5000 hCaSMC; 10,000 hCaEC) human coronary artery cells is applied to 96-well plates in complete media after being seeded into tissue culture flasks for expansion. In order to synchronize cells and induce G0 state, complete media is replaced with incomplete media after two days. Two days later, incomplete media are removed and replaced with complete media (serum/growth factors) to induce G0 to G1 transition. Complete media also contain drug at desired concentrations to determine its effects on cell proliferation. On day 7,3H-thymidine is added to cells to monitor DNA synthesis, and cells are harvested after overnight incorporation of radioactivity. After an incubation period of 72 h, 25 μL (1 μCi/well) of3H-thymidine are added to each well. The cells are incubated at 37°C for 16-18 h to allow for incorporation of3H-thymidine into newly synthesized DNA and the cells harvested onto 96-well plates containing bonded glass fibre filters . The filter plates are air-dried overnight, MicroScint-20 (25 μL) added to each filter well and counted. Drug activity is determined by the inhibition of3H-thymidine incorporation into newly synthesized DNA relative to cells grown in complete media.
Animal Protocol
Male Sprague-Dawley rats
2.5 mg/kg
intravenous or oral
References

[1]. Eur Heart J . 2006 Apr;27(8):988-93.

[2]. J Cardiovasc Pharmacol . 2007 Apr;49(4):228-35.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C52H79N5O12
Molecular Weight
966.21000
Exact Mass
965.5725
Elemental Analysis
C, 64.64; H, 8.24; N, 7.25; O, 19.87
CAS #
221877-54-9
Related CAS #
42-(2-Tetrazolyl)rapamycin;221877-56-1
Appearance
Solid powder
SMILES
C[C@@H]1CC[C@H]2C[C@@H](/C(=C/C=C/C=C\[C@H](C[C@H](C(=O)[C@@H]([C@@H](/C(=C/[C@H](C(=O)C[C@H](OC(=O)[C@@H]3CCCCN3C(=O)C(=O)[C@@]1(O2)O)[C@H](C)C[C@@H]4CC[C@@H]([C@@H](C4)OC)N5C=NN=N5)C)/C)O)OC)C)C)/C)OC
InChi Key
CGTADGCBEXYWNE-JUKNQOCSSA-N
InChi Code
InChI=1S/C52H79N5O12/c1-31-16-12-11-13-17-32(2)43(65-8)28-39-21-19-37(7)52(64,69-39)49(61)50(62)56-23-15-14-18-41(56)51(63)68-44(34(4)26-38-20-22-40(45(27-38)66-9)57-30-53-54-55-57)29-42(58)33(3)25-36(6)47(60)48(67-10)46(59)35(5)24-31/h11-13,16-17,25,30-31,33-35,37-41,43-45,47-48,60,64H,14-15,18-24,26-29H2,1-10H3/b13-11+,16-12+,32-17+,36-25+/t31-,33-,34-,35-,37-,38+,39+,40+,41+,43+,44+,45-,47-,48+,52-/m1/s1
Chemical Name
(1R,9S,12S,15R,16E,18R,19R,21R,23S,24Z,26E,28E,30S,32S,35R)-1,18-dihydroxy-19,30-dimethoxy-12-[(2R)-1-[(1S,3R,4S)-3-methoxy-4-(tetrazol-1-yl)cyclohexyl]propan-2-yl]-15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[30.3.1.04,9]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone
Synonyms
A 179578; A-179578; A179578; ABT578; ABT-578; ABT 578; Endeavor; Zotarolimus; 42-deoxy-42-(1H-tetrazol-1-yl)-; (42S)-Rapamycin
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~100 mg/mL (~103.5 mM)
Water: <1 mg/mL
Ethanol: ~100 mg/mL (~103.5 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (2.59 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (2.59 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.0350 mL 5.1749 mL 10.3497 mL
5 mM 0.2070 mL 1.0350 mL 2.0699 mL
10 mM 0.1035 mL 0.5175 mL 1.0350 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Status Interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04825886 Active
Recruiting
Device: Zotarolimus-Eluting
Stent
Coronary Disease
Myocardial Ischemia
Chonnam National University
Hospital
December 28, 2017
NCT04937803 Active
Recruiting
Device: Drug-coated balloon
Device: Zotarolimus-Eluting
Coronary Stent
ACS
DCB
Harbin Medical University April 19, 2021
NCT02100722 Active
Recruiting
Procedure: CABG
Device: Resolute Onyx Stent
Coronary Disease
Coronary Stenosis
Stanford University August 25, 2014
NCT04192747 Active
Recruiting
Device: Percutaneous Coronary
Intervention
Coronary Disease
Coronary Stenosis
Elixir Medical Corporation December 16, 2020
Biological Data
  • Zotarolimus(ABT-578)

    Inhibition of FKBP-12 binding by zotarolimus. Eur Heart J, 2006, 27(8), 988-993.

  • Zotarolimus(ABT-578)

    Inhibition of cultured hCaSMC and hCaEC by zotarolimus.

  • Zotarolimus(ABT-578)

    Representative histological images of low (×4) and high (×20) power magnification of arteries implanted with zotarolimus-eluting stents (A and C) and control (PC-coated) stents (B and D) after 28 days.

Contact Us Back to top