yingweiwo

Ziprasidone HCl hydrate

Alias: Ziprasidone HCl; Ziprasidone HCl hydrate; CP-88,059; CP-88,059-01; CP88059; CP-88059; CP 88059; CP88059 hydrochloride
Cat No.:V25710 Purity: ≥98%
Ziprasidone HCl hydrate (CP88059) is a combined 5-HT (serotonin) and dopamine receptor antagonist that is licensed for the treatment of schizophrenia, has antipsychotic activity.
Ziprasidone HCl hydrate
Ziprasidone HCl hydrate Chemical Structure CAS No.: 138982-67-9
Product category: 5-HT Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
250mg
500mg
1g
Other Sizes

Other Forms of Ziprasidone HCl hydrate:

  • Ziprasidone free base
  • Ziprasidone D8
  • Ziprasidone HCl (CP-88059)
  • Ziprasidone mesylate trihydrate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Ziprasidone HCl hydrate (CP88059) is a combined 5-HT (serotonin) and dopamine receptor antagonist that is licensed for the treatment of schizophrenia, has antipsychotic activity.

Biological Activity I Assay Protocols (From Reference)
Targets
Rat 5-HT2A ( Ki = 0.42 nM ); Rat 5-HT1A Receptor ( Ki = 3.4 nM ); Rat D2 Receptor ( Ki = 4.8 nM )
ln Vitro
Ziprasidone hydrochloride monohydrate (0-500 nM, 150 seconds) blocks wild-type hERG currents [2]. Cell Viability Assay[2] Cell Line: HEK-293 Cell Concentration: 0-500 nM Incubation Time: 150 sec Results: Blocks wild-type hERG current (IC50 = 120 nm) in a voltage- and concentration-dependent manner.
ln Vivo
Ziprasidone hydrochloride monohydrate (oral gavage; 20 mg/kg; once daily; 7 weeks) results in weight loss, lower physical activity levels, higher resting energy expenditure, and increased thermogenesis in the cold [3] . Animal model: 8-week-old female Sprague-Dawley rats, weighing 200 to 250 g[3] Dosage: 20 mg/kg Administration method: oral gavage; 20 mg/kg; once a day; 7-week results: significant weight loss (P = 0.031), had lower levels of physical activity (P = 0.016), had higher resting energy expenditure (P < 0.001), and showed greater thermogenic capacity when cold (P < 0.001).
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Because there is little published experience with ziprasidone during breastfeeding, other antipsychotic agents may be preferred, especially while nursing a newborn or preterm infant. A safety scoring system finds ziprasidone possible to use cautiously during breastfeeding. Infants breastfed during maternal use of ziprasidone should be monitored for excess sedation, irritability, poor feeding, and extrapyramidal symptoms, such as tremors and abnormal muscle movements.
◉ Effects in Breastfed Infants
A woman took ziprasidone 40 mg and citalopram 60 mg daily throughout pregnancy and postpartum. She breastfed extensively, except for occasional formula feedings by others. At 6 months of age, a pediatrician found the infant to be healthy with normal growth and development.
Patients enlisted in the National Pregnancy Registry for Atypical Antipsychotics who were taking a second-generation antipsychotic drug while breastfeeding (n = 576) were compared to control breastfeeding patients who were not treated with a second-generation antipsychotic (n = 818). Of the patients who were taking a second-generation antipsychotic drug, 60.4% were on more than one psychotropic. A review of the pediatric medical records, no adverse effects were noted among infants exposed or not exposed to second-generation antipsychotic monotherapy or to polytherapy. The number of women taking ziprasidone was not reported.
◉ Effects on Lactation and Breastmilk
Prolactin elevation has occurred during ziprasidone treatment, and galactorrhea has been reported, often in adolescents. However, prolactin elevation might be more transient and less severe than with phenothiazines. The prolactin level in a mother with established lactation may not affect her ability to breastfeed.
Patients enlisted in the National Pregnancy Registry for Atypical Antipsychotics who were taking a second-generation antipsychotic drug while breastfeeding (n = 576) were compared to control breastfeeding patients who had primarily diagnoses of major depressive disorder and anxiety disorders, most often treated with SSRI or SNRI antidepressants, but not with a second-generation antipsychotic (n = 818). Among women on a second-generation antipsychotic, 60.4% were on more than one psychotropic compared with 24.4% among women in the control group. Of the women on a second-generation antipsychotic, 59.3% reported “ever breastfeeding” compared to 88.2% of women in the control group. At 3 months postpartum, 23% of women on a second-generation antipsychotic were exclusively breastfeeding compared to 47% of women in the control group. The number of women taking ziprasidone was not reported.
References

[1]. 5-HT(1A) receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex. Biol Psychiatry. 2000;48(3):229-237.

[2]. Block of hERG channel by ziprasidone: biophysical properties and molecular determinants. Biochem Pharmacol. 2006 Jan 12;71(3):278-86.

[3]. The effect of ziprasidone on body weight and energy expenditure in female rats. Metabolism. 2012 Jun;61(6):787-93.

Additional Infomation
See also: Ziprasidone Hydrochloride (annotation moved to).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H24CL2N4O2S
Molecular Weight
467.409
Exact Mass
466.099
Elemental Analysis
C, 53.96; H, 5.18; Cl, 15.17; N, 11.99; O, 6.85; S, 6.86
CAS #
138982-67-9
Related CAS #
Ziprasidone; 146939-27-7; Ziprasidone-d8; 1126745-58-1; Ziprasidone hydrochloride;122883-93-6; Ziprasidone mesylate trihydrate; 199191-69-0
PubChem CID
60853
Appearance
Pink to red solid powder
Boiling Point
554.8ºC at 760 mmHg
Melting Point
300°C
Vapour Pressure
2.38E-12mmHg at 25°C
LogP
4.687
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
4
Heavy Atom Count
30
Complexity
573
Defined Atom Stereocenter Count
0
SMILES
ClC1C([H])=C2C(C([H])([H])C(N2[H])=O)=C([H])C=1C([H])([H])C([H])([H])N1C([H])([H])C([H])([H])N(C2C3=C([H])C([H])=C([H])C([H])=C3SN=2)C([H])([H])C1([H])[H]
InChi Key
ZCBZSCBNOOIHFP-UHFFFAOYSA-N
InChi Code
InChI=1S/C21H21ClN4OS.ClH.H2O/c22-17-13-18-15(12-20(27)23-18)11-14(17)5-6-25-7-9-26(10-8-25)21-16-3-1-2-4-19(16)28-24-21;;/h1-4,11,13H,5-10,12H2,(H,23,27);1H;1H2
Chemical Name
5-[2-[4-(1,2-benzothiazol-3-yl)piperazin-1-yl]ethyl]-6-chloro-1,3-dihydroindol-2-one;hydrate;hydrochloride
Synonyms
Ziprasidone HCl; Ziprasidone HCl hydrate; CP-88,059; CP-88,059-01; CP88059; CP-88059; CP 88059; CP88059 hydrochloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~25 mg/mL (~53.5 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.35 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (5.35 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1394 mL 10.6972 mL 21.3945 mL
5 mM 0.4279 mL 2.1394 mL 4.2789 mL
10 mM 0.2139 mL 1.0697 mL 2.1394 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us