Vidarabine (Ara-A)

Alias:
Cat No.:V1460 Purity: ≥98%
Vidarabine(Ara-A; Adenine Arabinoside; 9-β-D-Arabinofuranosyladenine; Arabinofuranosyladenine) is an approved antiviral drug that interfers with the synthesis of viral DNA, and is mainly used to treat HSV and VZV: herpes simplex and varicella zoster viruses.
Vidarabine (Ara-A) Chemical Structure CAS No.: 5536-17-4
Product category: DNA(RNA) Synthesis
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
10g
25g
50g
Other Sizes

Other Forms of Vidarabine (Ara-A):

  • Vidarabine monohydrate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Vidarabine (Ara-A; Adenine Arabinoside; 9-β-D-Arabinofuranosyladenine; Arabinofuranosyladenine) is an approved antiviral drug that interfers with the synthesis of viral DNA, and is mainly used to treat HSV and VZV: herpes simplex and varicella zoster viruses. In wild type, acyclovir and vidarabine work in concert. Since cellular kinases phosphorylate vidarabine to its active vidarabine–triphosphate form, which is independent of the viral TK for activation, vidarabine can inhibit acyclovir-resistant/TK-deficient mutants of HSV and VZV.

Biological Activity I Assay Protocols (From Reference)
Targets
HSV-2 ( IC50 = 11.3 μg/mL ); HSV-1 ( IC50 = 9.3 μg/mL )
ln Vitro

Vidarabine and Acyclovir cooperate to treat wild type. Because vidarabine is phosphorylated to its active vidarabine–triphosphate form by cellular kinases and is not dependent on the viral TK for its activation, it can inhibit acyclovir-resistant/TK-deficient mutants of HSV and VZV. [1] In Vero cells, vidarabine and acyclovir (ACV) alone exhibit a concentration-dependent inhibition of HSV-1 plaque formation. Acidic protein-bound polysaccharide (APBP) and vidarabine have synergistic effects on HSV-1 plaque formation in Vero cells.[2] Vidarabine directly affects human adenoviruses and other double-strand DNA viruses, as well as the varicella-zoster virus (VZV). In vitro, vidarabine selectively prevents adenovirus type 11 replication without evident cytotoxicity. Vidarabine primarily affects proteins synthesized after DNA replication, rather than those synthesized initially.[3] An antiviral medication called vidarabine works against RNA tumor viruses, some rhabdoviruses, hepadnarviruses, and herpes viruses. In vitro and in vivo, vidarabine likewise exhibits anti-vaccinia virus activity.[4]

ln Vivo
Vidarabine is quickly converted to the main metabolite, 9-β-D-arabinofuranosyl hypoxanthine (Ara-Hx).[3]
Animal Protocol


References

[1]. Antiviral Res . 2006 Nov;72(2):157-61.

[2]. J Ethnopharmacol . 2000 Sep;72(1-2):221-7.

[3]. Antivir Chem Chemother . 2004 Sep;15(5):281-5.

[4]. Bioorg Med Chem Lett . 2009 Feb 1;19(3):792-6.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H13N5O4
Molecular Weight
267.24
Exact Mass
267.1
Elemental Analysis
C, 44.94; H, 4.90; N, 26.21; O, 23.95
CAS #
5536-17-4
Related CAS #
24356-66-9 (hydrate); 5536-17-4(free)
Appearance
White to off-white crystalline powder
SMILES
C1=NC(=C2C(=N1)N(C=N2)[C@H]3[C@H]([C@@H]([C@H](O3)CO)O)O)N
InChi Key
OIRDTQYFTABQOQ-UHTZMRCNSA-N
InChi Code
InChI=1S/C10H13N5O4/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(18)6(17)4(1-16)19-10/h2-4,6-7,10,16-18H,1H2,(H2,11,12,13)/t4-,6-,7+,10-/m1/s1
Chemical Name
(2R,3S,4S,5R)-2-(6-aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol
Synonyms

9-beta-Arabinofuranosyladenine; Adenine Arabinoside; ViraA; Ara-A; Vira A; Vira-A; 9-β-D-Arabinofuranosyladenine; Ara A; Arabinofuranosyladenine; Vidarabine

HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 50~53 mg/mL (187.1~198.3 mM)
Water: ~3 mg/mL (~11.2 mM)
Ethanol: <1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.35 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (9.35 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (9.35 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.7420 mL 18.7098 mL 37.4195 mL
5 mM 0.7484 mL 3.7420 mL 7.4839 mL
10 mM 0.3742 mL 1.8710 mL 3.7420 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT00000985 Completed Drug: Vidarabine
Drug: Acyclovir
Herpes Simplex National Institute of Allergy
and Infectious Diseases
(NIAID)
October 1990 Phase 3
Biological Data
  • Deamination of vidarabine and its prodrugs by adenosine deaminase1. Bioorg Med Chem Lett . 2009 Feb 1;19(3):792-6.
Contact Us Back to top