Tozadenant

Alias: RO 4494351; SYN 115; RO-4494351; SYN115; RO4494351; RO4494351-002; SYN-115; RO4494351-000
Cat No.:V16631 Purity: ≥98%
Tozadenant (formerly RO-4494351; SYN-115) is an orally bioavailable, selective adenosine A2A receptor antagonist with potential usefulness in the treatment of Parkinson disease (PD).
Tozadenant Chemical Structure CAS No.: 870070-55-6
Product category: Adenosine Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Tozadenant (formerly RO-4494351; SYN-115) is an orally bioavailable, selective adenosine A2A receptor antagonist with potential usefulness in the treatment of Parkinson disease (PD). It inhibits A2A receptor with Ki of 11.5 nM on human A2A and 6 nM on rhesus A2A. It enhances motor function in Parkinson's disease animal models. Antagonists of the adenosine A(2a) receptor lessen the severity of symptoms in animal models and people with Parkinson's disease (PD). The theory that A(2a) antagonists provide this benefit by lowering the basal ganglia indirect pathway's inhibitory output is supported by research on rodents.

Biological Activity I Assay Protocols (From Reference)
Targets
Rhesus A2A ( Ki = 6 nM ); Human A2A ( Ki = 11.5 nM )
ln Vivo
In line with the distribution of A2A receptors in the brain, 18F-MNI-444 exhibits regional uptake. Tozadenant (1.5, 10.5 mg/kg) and preladenant’s dose-dependent blocking show selectivity[1].
References

[1]. Adenosine 2A Receptor Occupancy by Tozadenant and Preladenant in Rhesus Monkeys. J Nucl Med. 2014 Oct;55(10):1712-8.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H26N4O4S
Molecular Weight
406.4991
Exact Mass
406.17
Elemental Analysis
C, 56.14; H, 6.45; N, 13.78; O, 15.74; S, 7.89
CAS #
870070-55-6
Appearance
Solid powder
SMILES
CC1(CCN(CC1)C(=O)NC2=NC3=C(C=CC(=C3S2)N4CCOCC4)OC)O
InChi Key
XNBRWUQWSKXMPW-UHFFFAOYSA-N
InChi Code
InChI=1S/C19H26N4O4S/c1-19(25)5-7-23(8-6-19)18(24)21-17-20-15-14(26-2)4-3-13(16(15)28-17)22-9-11-27-12-10-22/h3-4,25H,5-12H2,1-2H3,(H,20,21,24)
Chemical Name
4-hydroxy-N-(4-methoxy-7-morpholin-4-yl-1,3-benzothiazol-2-yl)-4-methylpiperidine-1-carboxamide
Synonyms
RO 4494351; SYN 115; RO-4494351; SYN115; RO4494351; RO4494351-002; SYN-115; RO4494351-000
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~50 mg/mL (~123.0 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.15 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.15 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (6.15 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4600 mL 12.3001 mL 24.6002 mL
5 mM 0.4920 mL 2.4600 mL 4.9200 mL
10 mM 0.2460 mL 1.2300 mL 2.4600 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02240290 Completed Drug: tozadenant tablet
Drug: C14-tozadenant capsule
N/A, as Healthy Volunteers Biotie Therapies Inc. September 2013 Phase 1
NCT00605553 Completed Drug: Placebo
Drug: Tozadenant
Parkinson's Disease Biotie Therapies Inc. April 2008 Phase 2
NCT01283594 Completed Drug: Placebo
Drug: Levodopa
(L-dopa)
Parkinson's Disease Biotie Therapies Inc. March 2011 Phase 2
Phase 3
NCT00783276 Completed Drug: SYN115
Drug: PLACEBO
Cocaine Dependence Virginia Commonwealth University October 2008 Early Phase 1
Contact Us Back to top