Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
ln Vitro |
Tiliroside suppresses insulin α-amylase in vitro (IC50=0.28 mM) [1].
|
---|---|
ln Vivo |
The rise in blood pressure levels after meals in the tiliroside group was markedly reduced in drug-treated ICR mice [1].
|
References | |
Additional Infomation |
Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid.
Tiliroside has been reported in Daphne genkwa, Leonurus japonicus, and other organisms with data available. |
Molecular Formula |
C30H26O13
|
---|---|
Molecular Weight |
594.5196
|
Exact Mass |
594.137
|
Elemental Analysis |
C, 60.61; H, 4.41; O, 34.98
|
CAS # |
20316-62-5
|
PubChem CID |
5320686
|
Appearance |
Light yellow to yellow solid powder
|
Density |
1.7±0.1 g/cm3
|
Boiling Point |
943.9±65.0 °C at 760 mmHg
|
Melting Point |
257-260ºC
|
Flash Point |
311.9±27.8 °C
|
Vapour Pressure |
0.0±0.3 mmHg at 25°C
|
Index of Refraction |
1.759
|
LogP |
3.83
|
Hydrogen Bond Donor Count |
7
|
Hydrogen Bond Acceptor Count |
13
|
Rotatable Bond Count |
8
|
Heavy Atom Count |
43
|
Complexity |
1040
|
Defined Atom Stereocenter Count |
5
|
SMILES |
O1[C@]([H])([C@@]([H])([C@]([H])([C@@]([H])([C@@]1([H])C([H])([H])OC(/C(/[H])=C(\[H])/C1C([H])=C([H])C(=C([H])C=1[H])O[H])=O)O[H])O[H])O[H])OC1C(C2=C(C([H])=C(C([H])=C2OC=1C1C([H])=C([H])C(=C([H])C=1[H])O[H])O[H])O[H])=O
|
InChi Key |
DVGGLGXQSFURLP-VWMSDXGPSA-N
|
InChi Code |
InChI=1S/C30H26O13/c31-16-6-1-14(2-7-16)3-10-22(35)40-13-21-24(36)26(38)27(39)30(42-21)43-29-25(37)23-19(34)11-18(33)12-20(23)41-28(29)15-4-8-17(32)9-5-15/h1-12,21,24,26-27,30-34,36,38-39H,13H2/b10-3+/t21-,24-,26+,27-,30+/m1/s1
|
Chemical Name |
[(2R,3S,4S,5R,6S)-6-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate
|
Synonyms |
Kaempferol 3-O-β-D-Glucopyranoside-6-p-coumaril ester; Tiliroside; Kaempferol 3-O-β-D-(6''-E-p-coumaroyl)-glucopyranoside
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: This product requires protection from light (avoid light exposure) during transportation and storage. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~250 mg/mL (~420.51 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.08 mg/mL (3.50 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (3.50 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (3.50 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.6820 mL | 8.4101 mL | 16.8203 mL | |
5 mM | 0.3364 mL | 1.6820 mL | 3.3641 mL | |
10 mM | 0.1682 mL | 0.8410 mL | 1.6820 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.