yingweiwo

Sunitinib Malate (SU-11248 Malate)

Alias: sunitinib; SU-11248; SU 11248; Sutent; SU011248 L-malate salt; PHA-290940AD; sunitinib L-malate; Sunitinib malate [USAN]; SU010398; SU11248; SU011248; trade name: Sutent
Cat No.:V0489 Purity: ≥98%
Sunitinib Malate (formerly also known as SU11248 Malate; trade nameSutent)) is a potent, orally bioavailable and multi-targeted RTK (receptor tyrosine kinase) inhibitor with potent anticancer activities.
Sunitinib Malate (SU-11248 Malate)
Sunitinib Malate (SU-11248 Malate) Chemical Structure CAS No.: 341031-54-7
Product category: VEGFR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
500mg
1g
5g
Other Sizes

Other Forms of Sunitinib Malate (SU-11248 Malate):

  • N-Desethyl Sunitinib hydrochloride (SU-12662 hydrochloride)
  • Sunitinib-d4 (Sunitinib d4)
  • N-Desethyl Sunitinib-d5 (N-Desethyl-Sunitinib-d5)
  • (E/Z)-N-Desethylsunitinib hydrochloride
  • N-Desethyl Sunitinib-d5 hydrochloride
  • Sunitinib free base (SU-11248)
  • Sunitinib D10
  • N-Desethyl Sunitinib-d4 TFA
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Sunitinib Malate (formerly also known as SU11248 Malate; trade nameSutent)) is a potent, orally bioavailable and multi-targeted RTK (receptor tyrosine kinase) inhibitor with potent anticancer activities. In cell-free assays, it inhibits c-Kit in addition to VEGFR2 (Flk-1) and PDGFRβ, with IC50s of 80 nM and 2 nM, respectively. On January 26, 2006, the FDA approved it for the treatment of renal cell carcinoma and gastrointestinal stromal tumor that was resistant to imatinib. The malate salt of an indolinone-based tyrosine kinase inhibitor with possible anti-tumor properties is called sunitinib malate. Sunitinib inhibits angiogenesis and cell proliferation by blocking the tyrosine kinase activities of VEGFR2, PDGFRb, and c-kit.

Biological Activity I Assay Protocols (From Reference)
Targets
VEGFR2 (IC50 = 80 nM); PDGFRβ (IC50 = 2 nM)
ln Vitro
Sunitinib inhibits FLT-3 and Kit with considerable potency.[1] With a Ki of 9 nM and 8 nM, respectively, sunitinib is a strong ATP-competitive inhibitor of VEGFR2 (Flk1) and PDGFRβ. It provides >10-fold greater selectivity for VEGFR2 and PDGFR than FGFR-1, EGFR, Cdk2, Met, IGFR-1, Abl, and src. With IC50 values of 10 nM and 10 nM, respectively, sunitinib inhibits the phosphorylation of VEGFR2 in response to VEGF and PDGFRβ in response to PDGF in serum-starved NIH-3T3 cells expressing VEGFR2 or PDGFRβ. Sunitinib has an IC50 of 40 nM for VEGF-induced proliferation of serum-starved HUVECs and an IC50 of 39 nM and 69 nM for PDGF-induced proliferation of NIH-3T3 cells overexpressing PDGFRβ or PDGFRβ, respectively.[2] With an IC50 of 250 nM, 50 nM, and 30 nM, respectively, sunitinib inhibits the phosphorylation of wild-type FLT3, FLT3-ITD, and FLT3-Asp835. With IC50 values of 8 nM and 14 nM, respectively, sunitinib suppresses the growth of MV4;11 and OC1-AML5 cells and, in a dose-dependent fashion, triggers apoptosis.[3]
ln Vivo
Sunitinib (20–80 mg/kg/day) exhibits broad and potent dose-dependent anti-tumor activity against a variety of tumor xenograft models, including HT-29, A431, Colo205, H-460, SF763T, C6, A375, or MDA-MB-435. This is consistent with the significant and selective inhibition of VEGFR2 or PDGFR phosphorylation and signaling in vivo. Six out of eight mice receiving 80 mg/kg/day of sunitinib for 21 days experience complete tumor regression, and 110 days after the end of the treatment, there is no regrowth of the tumor.Tumors that do not completely regress after the first round of treatment can still be successfully treated with sunitinib in a second round. Tumor MVD significantly decreases with sunitinib treatment, with SF763T glioma tumors reduced by approximately 40%. Tumor size remains unchanged, but luciferase-expressing PC-3M xenografts treated with SU11248 completely inhibits further tumor growth.[2] Treatment with sunitinib (20 mg/kg/day) increases survival in the FLT3-ITD bone marrow engraftment model and significantly suppresses the growth subcutaneous MV4;11 (FLT3-ITD) xenografts.[3]
Enzyme Assay
Sunitinib's IC50 values against PDGFRβ and VEGFR2 (Flk-1) are ascertained by employing glutathione S-transferasefusion proteins that encompass the entire RTK cytoplasmic domain. In order to measure the trans-phosphorylation activity of VEGFR2 (Flk-1) and PDGFRβ, biochemical tyrosine kinase assays are carried out in 96-well microtiter plates that have been precoated (20 μg/well in PBS) and incubated with the peptide substrate poly-Glu,Tyr (4:1) for an entire night at 4 °C. Adding 1-5% (w/v) BSA to PBS blocks excess protein binding sites. The cells of insects infected with baculovirus produce purified GST-fusion proteins. The microtiter wells are then filled with GST-VEGFR2 and GST-PDGFRβ in a 2 × concentration kinase dilution buffer that contains 40 μM NaVO4, 50 mM NaCl, 100 mM HEPES, and 0.02% (w/v) BSA. 50 ng/mL is the final enzyme concentration for GST-VEGFR2 or GST-PDGFRβ. To create a range of inhibitor concentrations suitable for every enzyme, 25 μL of diluted Sunitinib is then added to each reaction well. A solution of MnCl2 is mixed with varying concentrations of ATP to start the kinase reaction. The final concentration of MnCl2 is 10 mM, and the final ATP concentrations span the Km for the enzyme. After allowing the plates to sit at room temperature for five to fifteen minutes, the reaction is halted by adding EDTA. After that, TBST is used to wash the plates three times. After adding rabbit polyclonal antiphosphotyrosine antisera at a 1:10,000 dilution to the wells in TBST containing 0.025% (w/v) nonfat dry milk, 0.5% (w/v) BSA, and 100 μM NaVO4, the wells are incubated at 37 °C for one hour. After three TBST washes, the plates are inoculated with goat anti-rabbit antisera conjugated with horseradish peroxidase (1:10,000 dilution in TBST). The plates are cleaned three times with TBST after an hour of incubation at 37 °C. Once 2,2′-azino-di-[3-ethylbenzthiazoline sulfonate] has been added as substrate, the amount of phosphotyrosine in each well is quantified.
Cell Assay
The cells are starved for an entire night in a medium containing 0.1% FBS before FL (50 ng/mL; FLT3-WT cells only) and sunitinib are added. After 48 hours of culture, proliferation is assessed using trypan blue cell viability assays or the Alamar Blue assay. Apoptosis is quantified using Western blotting 24 hours after Sunitinib addition in order to identify caspase-3 levels or poly (ADP-ribose) polymerase (PARP) cleavage.
Animal Protocol
Mice: The mice used are female nu/nu (8–12 weeks old, 25 g). In short, on day 0, mice receive a subcutaneous injection of 3-5×106 tumor cells into the hind flank region. Once the tumors have grown to the indicated average size, the mice bearing the tumors are treated daily with SU11248 administered orally as a carboxymethyl cellulose suspension or as a citrate buffered (pH 3.5) solution. Tumor growth is assessed using tumor volume measurements taken twice a week. When tumors in animals receiving vehicle treatment reach an average size of 1000 mm3 or are determined to negatively impact the animals' quality of life, studies are usually stopped. Rats: There are forty 200–230 g female Sprague-Dawley rats used. Five to ten animals per group are fed freely. Under 2% isoflurane gas anesthesia, 1×104 Walker 256 cells are injected into the left abdominal mammary fat pad. Rats are weighed every day, and they are gavaged with 30 mg/kg of sunitinib malate or 5 mg/kg of figolimod in olive oil. Calipers are used to measure the tumours. Before the tumors become ulcerated, the animals are put to sleep and killed with an intracardiac injection of ketamine (50 mg/mL). Rats are dissected to look for intestinal, liver, kidney, or lung metastases.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Absorption
Maximum plasma concentrations (Cmax) of sunitinib are generally observed between 6 and 12 hours (Tmax) following oral administration. Food has no effect on the bioavailability of sunitinib. Sunitinib may be taken with or without food. The pharmacokinetics were similar in healthy volunteers and in the solid tumor patient populations tested, including patients with GIST and RCC.

Route of Elimination
Sunitinib is metabolized primarily by the cytochrome P450 enzyme, CYP3A4, to produce its primary active metabolite, which is further metabolized by CYP3A4. Elimination is primarily via feces. In a human mass balance study of [14C]sunitinib, 61% of the dose was eliminated in feces, with renal elimination accounting for 16% of the administered dose.

Volume of Distribution
2230 L (apparent volume of distribution, Vd/F)

Clearance
34 - 62 L/h [Total oral clearance]

Following oral administration, peak plasma concentrations of sunitinib generally occur within 6-12 hours. Food has no effect on bioavailability of sunitinib.

Steady-state concentrations of sunitinib and its primary active metabolite are achieved within 10 to 14 days. By Day 14, combined plasma concentrations of sunitinib and its active metabolite ranged from 62.9 - 101 ng/mL. No significant changes in the pharmacokinetics of sunitinib or the primary active metabolite were observed with repeated daily administration or with repeated cycles in the dosing regimens tested.

View More

Sunitinib and its primary active metabolite are 95 and 90% bound to human plasma proteins in vitro, respectively.

The apparent volume of distribution (Vd/F) for sunitinib was 2230 L. In the dosing range of 25 - 100 mg, the area under the plasma concentration-time curve (AUC) and Cmax increase proportionately with dose.


Metabolism / Metabolites
Sunitinib is metabolized primarily by the cytochrome P450 enzyme, CYP3A4, to produce its primary active metabolite, which is further metabolized by CYP3A4.

Sunitinib is metabolized principally by cytochrome P-450 (CYP) isoenzyme 3A4 to several metabolites. The main circulating metabolite, an N-desethyl derivative, has been shown to be equipotent to sunitinib in biochemical and cellular assays; this metabolite accounts for approximately 23-37% of total plasma concentrations of the drug and also is metabolized by CYP3A4.

Sunitinib and its primary active metabolite were the major drug-related compounds identified in plasma, urine, and feces, representing 91.5%, 86.4% and 73.8% of radioactivity in pooled samples, respectively.
Biological Half-Life
Following administration of a single oral dose in healthy volunteers, the terminal half-lives of sunitinib and its primary active metabolite are approximately 40 to 60 hours and 80 to 110 hours, respectively.
Following oral administration of a single dose in healthy volunteers, the terminal half-life of sunitinib or its primary active metabolite is approximately 40-60 or 80-110 hours, respectively.

Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of sunitinib during breastfeeding. Because sunitinib and its metabolite are over 90% bound to plasma proteins, the amount in milk is likely to be low. However, one of its metabolites has a half-life of up to 110 hours, and might accumulate in the infant. The manufacturer recommends that breastfeeding be discontinued during sunitinib therapy and for at least 4 weeks after the last dose.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
References

[1]. J Med Chem . 2003 Mar 27;46(7):1116-9.

[2]. Clin Cancer Res . 2003 Jan;9(1):327-37.

[3]. Blood . 2003 May 1;101(9):3597-605.

[4]. Mol Cancer Ther . 2003 Oct;2(10):1011-21.

[5]. Blood . 2004 Dec 15;104(13):4202-9.

[6]. Mol Cancer Ther . 2006 Oct;5(10):2522-30.

[7]. EMBO J . 2011 Mar 2;30(5):894-905.

Additional Infomation
Sunitinib Malate is the orally bioavailable malate salt of an indolinone-based tyrosine kinase inhibitor with potential antineoplastic activity. Sunitinib blocks the tyrosine kinase activities of vascular endothelial growth factor receptor 2 (VEGFR2), platelet-derived growth factor receptor b (PDGFRb), and c-kit, thereby inhibiting angiogenesis and cell proliferation. This agent also inhibits the phosphorylation of Fms-related tyrosine kinase 3 (FLT3), another receptor tyrosine kinase expressed by some leukemic cells.
An indole and pyrrole derivative that inhibits VEGFR-2 and PDGFR BETA RECEPTOR TYROSINE KINASES. It is used as an antineoplastic agent for the treatment of GASTROINTESTINAL STROMAL TUMORS, and for treatment of advanced or metastatic RENAL CELL CARCINOMA.
See also: Sunitinib (has active moiety).
Drug Indication
Gastrointestinal stromal tumour (GIST)Sutent is indicated for the treatment of unresectable and/or metastatic malignant gastrointestinal stromal tumour (GIST) in adults after failure of imatinib mesilate treatment due to resistance or intolerance. Metastatic renal cell carcinoma (MRCC)Sutent is indicated for the treatment of advanced/metastatic renal cell carcinoma (MRCC) in adults. Pancreatic neuroendocrine tumours (pNET)Sutent is indicated for the treatment of unresectable or metastatic, well-differentiated pancreatic neuroendocrine tumours with disease progression in adults. Experience with Sutent as first-line treatment is limited (see section 5. 1).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C26H33FN4O7
Molecular Weight
532.56
Exact Mass
532.233
Elemental Analysis
C, 58.64; H, 6.25; F, 3.57; N, 10.52; O, 21.03
CAS #
341031-54-7
Related CAS #
Sunitinib;557795-19-4; Sunitinib Malate;341031-54-7;Sunitinib-d10;1126721-82-1;Sunitinib-d4;1126721-79-6; 342641-94-5; 1275588-72-1 (mesylate) ; 1126641-10-8; 1327155-72-5 (HCl); 1221149-36-5 (acetate); 1332306-95-2 (oxalate)
PubChem CID
6456015
Appearance
Yellow solid powder
Density
1.3600 g/mL at 25 °C(lit.)
Boiling Point
156 °C(lit.)
Melting Point
189-191°C
Flash Point
163 °F
Index of Refraction
n20/D 1.455(lit.)
LogP
2.77
Hydrogen Bond Donor Count
6
Hydrogen Bond Acceptor Count
9
Rotatable Bond Count
10
Heavy Atom Count
38
Complexity
765
Defined Atom Stereocenter Count
1
SMILES
FC1C([H])=C([H])C2=C(C=1[H])/C(/C(N2[H])=O)=C(\[H])/C1=C(C([H])([H])[H])C(C(N([H])C([H])([H])C([H])([H])N(C([H])([H])C([H])([H])[H])C([H])([H])C([H])([H])[H])=O)=C(C([H])([H])[H])N1[H].O([H])[C@]([H])(C(=O)O[H])C([H])([H])C(=O)O[H]
InChi Key
LBWFXVZLPYTWQI-IPOVEDGCSA-N
InChi Code
InChI=1S/C22H27FN4O2.C4H6O5/c1-5-27(6-2)10-9-24-22(29)20-13(3)19(25-14(20)4)12-17-16-11-15(23)7-8-18(16)26-21(17)28;5-2(4(8)9)1-3(6)7/h7-8,11-12,25H,5-6,9-10H2,1-4H3,(H,24,29)(H,26,28);2,5H,1H2,(H,6,7)(H,8,9)/b17-12-;/t;2-/m.0/s1
Chemical Name
N-[2-(diethylamino)ethyl]-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide;(2S)-2-hydroxybutanedioic acid
Synonyms
sunitinib; SU-11248; SU 11248; Sutent; SU011248 L-malate salt; PHA-290940AD; sunitinib L-malate; Sunitinib malate [USAN]; SU010398; SU11248; SU011248; trade name: Sutent
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~15 mg/mL (~28.2 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.69 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.69 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (4.69 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 4% DMSO+30% PEG 300+ddH2O: 2mg/mL

Solubility in Formulation 5: 10 mg/mL (18.78 mM) in 100 mM citrate buffer (add these co-solvents sequentially from left to right, and one by one), suspension solution; Need ultrasonic and adjust pH to 5 with HCl.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8777 mL 9.3886 mL 18.7772 mL
5 mM 0.3755 mL 1.8777 mL 3.7554 mL
10 mM 0.1878 mL 0.9389 mL 1.8777 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03541902 Active
Recruiting
Drug: Cabozantinib
Drug: Sunitinib Malate
Renal Cell Carcinoma
Papillary Renal Cell Carcinoma
M.D. Anderson Cancer Center May 15, 2018 Phase 2
NCT00329043 Active
Recruiting
Drug: LHRH Agonist
Drug: Sunitinib Malate
Prostate Cancer M.D. Anderson Cancer Center May 2006 Phase 2
NCT00381641 Active
Recruiting
Drug: Sunitinib
Drug: Sunitinib Malate
Recurrent Thyroid Gland
Carcinoma
Refractory Thyroid Gland
Carcinoma
National Cancer Institute
(NCI)
August 8, 2006 Phase 2
NCT05687123 Recruiting Drug: Lutetium Lu 177 Dotatate
Drug: Sunitinib Malate
Metastatic Pancreatic
Neuroendocrine Tumor
Pancreatic Neoplasm
National Cancer Institute
(NCI)
January 6, 2024 Phase 1
NCT05678673 Recruiting Drug: Nivolumab
Drug: Sunitinib Malate
Non-Clear Cell Renal Cell
Carcinoma
Exelixis January 1, 2023 Phase 3
Biological Data
  • Sunitinib Malate

  • Sunitinib Malate
Contact Us