Size | Price | Stock | Qty |
---|---|---|---|
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
Other Sizes |
|
Succinic acid (SA) is a naturally occurring four-carbon dicarboxylic acid with the molecular formula C4H6O4 that is produced by liquefied petroleum gas. IT is an intermediate product of the tricarboxylic acid cycle and a fermentation product of anaerobic metabolism. It is an orally active anxiolytic agent and can be used as a precursor of many industrially important chemicals in food, chemical and pharmaceutical industries. SA is also a type of antimicrobial facial acid that’s used in skin care products to clear and brighten the skin. It also has anti-inflammatory and antioxidant effects- plus it can help soothe irritated skin. SA is considered similar to another very popular facial acid: hyaluronic acid.
Targets |
Microbial Metabolite; Endogenous Metabolite; Flavoring Agents; Alters several flavor and/or taste characteristics; Food additives; Fragrance Ingredients; Cosmetics -> Buffering; Environmental transformation -> Pesticide transformation products (metabolite, successor)
|
---|---|
ln Vitro |
Fermentation of agricultural carbohydrates yields succinic acid [2].
Succinic acid is considered as an important platform chemical. Succinic acid fermentation with Actinobacillus succinogenes strain BE-1 was optimized by central composite design (CCD) using a response surface methodology (RSM). The optimized production of succinic acid was predicted and the interactive effects between glucose, yeast extract, and magnesium carbonate were investigated. As a result, a model for predicting the concentration of succinic acid production was developed. The accuracy of the model was confirmed by the analysis of variance (ANOVA), and the validity was further proved by verification experiments showing that percentage errors between actual and predicted values varied from 3.02% to 6.38%. In addition, it was observed that the interactive effect between yeast extract and magnesium carbonate was statistically significant. In conclusion, RSM is an effective and useful method for optimizing the medium components and investigating the interactive effects, and can provide valuable information for succinic acid scale-up fermentation using A. succinogenes strain BE-1[1]. |
ln Vivo |
Male mice that are given succinic acid (3, 6 mg/kg; oral) have higher percentages of entrances into the open arm and longer durations there [3]. Food intake was considerably enhanced by succinic acid (3, 6, 12 mg/kg; ip) between 5 and 40 minutes after delivery. Rectal temperature was taken, and 1.5 mg/kg of succinic acid was found to prevent stress-induced hyperthermia [3].
|
Animal Protocol |
The putative anxiolytic activity of succinic acid was examined in male mice by using a number of experimental paradigms of anxiety and compared with that of the known anxiolytic compound diazepam. Use of the elevated plus-maze test revealed that diazepam (1.0, 2.0 and 4.0 mg/kg, PO) or succinic acid (3.0 or 6.0 mg/kg, PO) increased the percentage of entries into open arms and of time spent on open arms. In novel food consumption test, succinic acid (3.0, 6.0, and 12.0 mg/kg, IP) caused significant increases in food intake during 5 min when compared with the vehicle. In the stress-induced hyperthermia test, 40 min after drug administration rectal temperature was measured, succinic acid at dose of 1.5 mg/kg, inhibited stress-induced hyperthermia. Thus, these findings indicated that, in contrast with diazepam, succinic acid exhibits anxiolytic-like effect.[3]
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Succinic acid occurs normally in human urine (1.9-8.8 mg/L). Metabolism / Metabolites Succinic acid is a normal intermediary metabolite and a constituent of the citric acid cycle. It is readily metabolized when administered to animals, but may be partly excreted unchanged in the urine if large doses are fed. Succinic acid can be converted into fumaric acid by oxidation via succinate dehydrogenase. |
Toxicity/Toxicokinetics |
Toxicity Summary
Succinate can inhibit the activities of α-KG–dependent oxygenases (KDMs) and the TET family of 5-methlycytosine (5mC) hydroxylases. Succinate also mediates allosteric inhibition of hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs). Inhibition of HIF PHDs leads to activation of HIF-mediated pseudohypoxic response, whereas inhibition of KDMs and TET family of 5mC hydroxylases causes epigenetic alterations that ultimately cause cancer. Succination of KEAP1 in FH deficiency results in the constitutive activation of the antioxidant defense pathway mediated by NRF2, conferring a reductive milieu that promotes cell proliferation. Succination of the Krebs cycle enzyme Aco2 impairs aconitase activity in Fh1-deficient MEFs. Succination also causes irreversible inactivation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Toxicity Data Acute oral toxicity (LD50): 2260 mg/kg [Rat]. Non-Human Toxicity Values LD50 Rat oral 2260 mg/kg |
References |
|
Additional Infomation |
Therapeutic Uses
/EXPTL THER/ Succinic acid (100 mM) significantly inhibited systemic anaphylaxis induced by compound 48/80 /a potent mast cell degranulator/ in mice and dose-dependently inhibited local anaphylaxis activated by anti-dinitrophenyl IgE. Further 10 and 100 mM significantly inhibited histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-dinitrophenyl IgE. In addition succinic acid (0.1 and 1 mM) had a significant inhibitory effect on anti-dinitrophenyl IgE-induced tumor necrosis factor-alpha secretion from rat peritoneal mast cells. The level of cyclic AMP in rat peritoneal mast cells, when succinic acid (100 mM) was added, transiently and significantly increased about 4 times compared with that of basal cells. These results suggest a possible use of succinic acid in managing mast cell-dependent anaphylaxis. |
Molecular Formula |
C₄H₆O₄
|
---|---|
Molecular Weight |
118.09
|
Exact Mass |
118.026
|
CAS # |
110-15-6
|
Related CAS # |
84540-64-7 (Succinic acid tromethamine); 150-90-3 (Disodium succinate); 26776-24-9;14047-56-4 (Succinic acid sodium)
|
PubChem CID |
1110
|
Appearance |
WHITE MINUTE MONOCLINIC PRISMS
Triclinic or monoclinic prisms |
Density |
1.4±0.1 g/cm3
|
Boiling Point |
236.1±13.0 °C at 760 mmHg
|
Melting Point |
185 °C
|
Flash Point |
110.9±16.3 °C
|
Vapour Pressure |
0.0±1.0 mmHg at 25°C
|
Index of Refraction |
1.478
|
LogP |
-0.59
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
4
|
Rotatable Bond Count |
3
|
Heavy Atom Count |
8
|
Complexity |
92.6
|
Defined Atom Stereocenter Count |
0
|
SMILES |
O([H])C(C([H])([H])C([H])([H])C(=O)O[H])=O
|
InChi Key |
KDYFGRWQOYBRFD-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C4H6O4/c5-3(6)1-2-4(7)8/h1-2H2,(H,5,6)(H,7,8)
|
Chemical Name |
butanedioic acid
|
Synonyms |
Wormwood acid SA; succinic acid; butanedioic acid; 110-15-6; Amber acid; Asuccin; Dihydrofumaric acid; Wormwood acid; Katasuccin;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~100 mg/mL (~846.81 mM)
H2O : ~30 mg/mL (~254.04 mM) |
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.75 mg/mL (23.29 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 27.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.75 mg/mL (23.29 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 27.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.75 mg/mL (23.29 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: 32.5 mg/mL (275.21 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 8.4681 mL | 42.3406 mL | 84.6812 mL | |
5 mM | 1.6936 mL | 8.4681 mL | 16.9362 mL | |
10 mM | 0.8468 mL | 4.2341 mL | 8.4681 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.