yingweiwo

Spermine (NSC-268508; Neuridine)

Alias: Spermine free base, Gerontine, Musculamine, Neuridine
Cat No.:V5080 Purity: ≥98%
Spermine (formerly known as NSC 268508), a potent polycationic biogenic polyamine derived from spermidine, functions directly as a free radical scavenger to protect DNA from free radical attack.
Spermine (NSC-268508; Neuridine)
Spermine (NSC-268508; Neuridine) Chemical Structure CAS No.: 71-44-3
Product category: Endogenous Metabolite
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
10g
25g
Other Sizes

Other Forms of Spermine (NSC-268508; Neuridine):

  • Spermine tetrahydrochloride
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Spermine (formerly known as NSC 268508), a potent polycationic biogenic polyamine derived from spermidine, functions directly as a free radical scavenger to protect DNA from free radical attack. Spermine can be used in a wide variety of biological applications as a supplement or regulatory agent.Used as co-matrix with DHB for MALDI-MS of sialylated glycans in negative ion mode.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
ROS-induced DNA damage is inhibited by spermine (NSC 268508) at physiologically relevant doses; peak suppression is shown at 1 to 2 mM. These concentrations fall comfortably within the range of physiological spermine concentrations that have been estimated [1].
ADME/Pharmacokinetics
Metabolism / Metabolites
Uremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces.
Toxicity/Toxicokinetics
Toxicity Summary
Uremic toxins such as spermine are actively transported into the kidneys via organic ion transporters (especially OAT3). Increased levels of uremic toxins can stimulate the production of reactive oxygen species. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) (A7868). Reactive oxygen species can induce several different DNA methyltransferases (DNMTs) which are involved in the silencing of a protein known as KLOTHO. KLOTHO has been identified as having important roles in anti-aging, mineral metabolism, and vitamin D metabolism. A number of studies have indicated that KLOTHO mRNA and protein levels are reduced during acute or chronic kidney diseases in response to high local levels of reactive oxygen species (A7869).
Spermine is derived from spermidine by spermine synthase. Spermine is a polyamine, a small organic cations that is absolutely required for eukaryotic cell growth. Spermine, is normally found in millimolar concentrations in the nucleus. Spermine functions directly as a free radical scavenger, and forms a variety of adducts that prevent oxidative damage to DNA. Oxidative damage to DNA by reactive oxygen species is a continual problem that cells must guard against to survive. Hence, spermine is a major natural intracellular compound capable of protecting DNA from free radical attack. Spermine is also implicated in the regulation of gene expression, the stabilization of chromatin, and the prevention of endonuclease-mediated DNA fragmentation.
References

[1]. The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11140-5.

[2]. Polyamines and Their Role in Virus Infection. Microbiol Mol Biol Rev. 2017 Sep 13;81(4). pii: e00029-17.

Additional Infomation
Spermine is a polyazaalkane that is tetradecane in which the carbons at positions 1, 5, 10 and 14 are replaced by nitrogens. Spermine has broad actions on cellular metabolism. It has a role as an antioxidant, an immunosuppressive agent and a fundamental metabolite. It is a polyazaalkane and a tetramine. It is a conjugate base of a spermine(4+).
Spermine is a spermidine-derived biogenic polyamine found as a polycation at all pH values. Found in various tissues and organisms, it often acts as an essential growth factor in some bacterial species. Spermine is associated with nucleic acids, particularly in viruses, and is thought to stabilize the helical structure.
Spermine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Spermine has been reported in Cyanidium caldarium, Brasenia schreberi, and other organisms with data available.
Spermine is a polyamine that has a similar structure to tetradecane but the carbons at positions 1, 5, 10 and 14 are replaced by nitrogens. Spermine plays a broad role in cellular metabolic processes.
Spermine is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.
Spermine is associated with nucleic acids, particularly in viruses, and is thought to stabilize the helical structure. [PubChem]
Spermine is a metabolite found in or produced by Saccharomyces cerevisiae.
A biogenic polyamine formed from spermidine. It is found in a wide variety of organisms and tissues and is an essential growth factor in some bacteria. It is found as a polycation at all pH values. Spermine is associated with nucleic acids, particularly in viruses, and is thought to stabilize the helical structure.
See also: Hydrocarbons, terpene processing by-products (annotation moved to).
Drug Indication
For nutritional supplementation, also for treating dietary shortage or imbalance
Mechanism of Action
Spermine is derived from spermidine by spermine synthase. Spermine is a polyamine, a small organic cations that is absolutely required for eukaryotic cell growth. Spermine, is normally found in millimolar concentrations in the nucleus. Spermine functions directly as a free radical scavenger, and forms a variety of adducts that prevent oxidative damage to DNA. Oxidative damage to DNA by reactive oxygen species is a continual problem that cells must guard against to survive. Hence, spermine is a major natural intracellular compound capable of protecting DNA from free radical attack. Spermine is also implicated in the regulation of gene expression, the stabilization of chromatin, and the prevention of endonuclease-mediated DNA fragmentation.
Pharmacodynamics
Spermine is a polyamine. It is an organic molecule that is involved in cellular metabolism.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H26N4
Molecular Weight
202.3402
Exact Mass
202.215
CAS #
71-44-3
Related CAS #
Spermine tetrahydrochloride;306-67-2
PubChem CID
1103
Appearance
Colorless to off-white <29°C powder,>29°C liquid
Density
0.9±0.1 g/cm3
Boiling Point
308.4±0.0 °C at 760 mmHg
Melting Point
310-311 °C (dec.)(lit.)
Flash Point
175.6±22.6 °C
Vapour Pressure
0.0±0.6 mmHg at 25°C
Index of Refraction
1.485
LogP
-0.96
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
11
Heavy Atom Count
14
Complexity
86.1
Defined Atom Stereocenter Count
0
SMILES
N([H])(C([H])([H])C([H])([H])C([H])([H])N([H])[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])N([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H]
InChi Key
PFNFFQXMRSDOHW-UHFFFAOYSA-N
InChi Code
InChI=1S/C10H26N4/c11-5-3-9-13-7-1-2-8-14-10-4-6-12/h13-14H,1-12H2
Chemical Name
N,N′-Bis(3-aminopropyl)-1,4-diaminobutane
Synonyms
Spermine free base, Gerontine, Musculamine, Neuridine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~125 mg/mL (~617.77 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 100 mg/mL (494.22 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.9422 mL 24.7109 mL 49.4218 mL
5 mM 0.9884 mL 4.9422 mL 9.8844 mL
10 mM 0.4942 mL 2.4711 mL 4.9422 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us