yingweiwo

Sorbitol

Alias: Glucitol; D-Sorbitol
Cat No.:V15069 Purity: ≥98%
D-Sorbitol (Sorbitol) is a six-carbon sugar alcohol that can be used as a sugar substitute.
Sorbitol
Sorbitol Chemical Structure CAS No.: 50-70-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
250mg
500mg
Other Sizes

Other Forms of Sorbitol:

  • D-Sorbitol-d8 (Sorbitol-d8; D-Glucitol-d8)
  • D-Sorbitol-13C
  • Sorbitol, L-
  • D-Sorbitol-d4
  • D-Sorbitol-13C6 (Sorbitol-13C6; D-Glucitol-13C6)
  • D-Sorbitol-d2
  • D-Sorbitol-d1-2
  • D-Sorbitol-d2-1
  • D-Sorbitol-d2-2
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
D-Sorbitol (Sorbitol) is a six-carbon sugar alcohol that can be used as a sugar substitute. D-Sorbitol can be used as a stabilizing excipient and/or isotonic agent, sweetener, humectant, thickener and dietary supplement.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Chemically, high-temperature hydrogenation of nitrones or sugars yields D-Sorbitol (Sorbitol). Through an enzymatic mechanism, bacteria like Zymomonas mobilis and Candida boidini can also create D-Sorbitol (Sorbitol) [1]. (Sorbitol) starts the plasticizer in the tablet film coating and the capsule's fast disintegrant. D-sorbitol, often known as sorbitol, is used as a medication stabilizer and sugar substitute in oral solutions. Additionally, D-sorbitol (sorbitol) is frequently used to solubilize medications like indomethacin. Sorbitol, also known as D-Sorbitol, is frequently used in lyophilized parenteral protein formulations as an isotonic agent and/or stabilizing excipient. -In certain preparations, sorbitol functions as a humectant [1].
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Sorbitol will either be excreted in the urine by the kidneys, or metabolized to carbon dioxide and dextrose.
The amounts of sorbitol (SOR) excreted in 24-hr urine were determined on two groups, ie, diabetic and nondiabetic patients, using an improved method in which ion exchange resin column processing was applied, and these levels were compared with SOR levels in whole blood. Urinary SOR concentration was also determined in diabetic and normal rats in the same manner and its relationship to aldose reductase (AR) activity in whole blood was investigated. Changes in SOR levels in urine and whole blood were compared in diabetic rats after administration of an AR inhibitor (ARI). Whole blood SOR levels and urinary SOR excretion were significantly higher in diabetic patients than in nondiabetic patients. The same results were obtained in the animal models. In diabetic rats, the urinary SOR excretion was about five times higher than that in control rats, and the AR activity in whole blood was also significantly higher. The increase in urinary SOR excretion and whole blood SOR levels, as well as AR activity, in blood in the diabetic state was inhibited by ARI administration. The influence of the diabetic state and the efficacy of the ARI were more marked in urinary SOR excretion than in whole blood SOR levels. These data indicate that determinations of urinary SOR excretion and AR activity are easily measurable and of benefit to assessing the diabetic condition.
An accelerated polyol pathway in diabetes contributes to the development of diabetic complications. To elucidate diabetic nephropathy involving also renal tubular damage, ...urinary sorbitol concentrations /were measured/ concomitantly with urinary N-acetyl-D-glucosaminidase (NAG) excretion in WBN-kob diabetic rats.Twenty-four-hour urinary sorbitol concentrations increased in the diabetic rats in parallel with whole blood sorbitol concentrations. An increase in 24-h urinary NAG excretion coincided with the elevated urinary sorbitol levels in the diabetic rats. The administration of epalrestat, an aldose reductase inhibitor, reduced the increased whole blood and urinary sorbitol concentrations and urinary NAG excretion concomitantly with renal aldose reductase inhibition in the diabetic rats. These results indicate that diabetic nephropathy involves distorted cell function of renal tubules, and that treatment with epalrestat may prevent at least the progress of the nephropathy.
The purpose of this study was to determine whether sorbitol concentration is elevated in the cerebrospinal fluid (CSF) of non-medically ill patients with mood disorders. Lumbar punctures were performed on 30 subjects - 10 with bipolar mood disorder, 10 with unipolar mood disorder, and 10 age-matched normal controls, and CSF sorbitol concentrations were measured, using a gas chromatographic-mass spectroscopic technique. The mean+/-standard deviation of CSF sorbitol concentrations differed among the three groups as follows: bipolar (22.9+/-4.6 umoles/L) > unipolar (19.0+/-2.8 umoles/L)>normal control (15. 6+/-1.9 umoles/L). One-way ANOVA showed significant (P=0.0002) differences among the three groups. Post-hoc tests indicated a significant (P<0.05) difference between bipolars and normal controls, bipolars and unipolars, and unipolars and normal controls...
Streptozocin (Str) diabetic rats were obtained by Str iv (35 mg/kg). Glycemia and sorbitol levels from sciatic nerve and lens were measured after 1 d, 2, 5, and 8 months of diabetes. Sorbitol concentrations in serum, heart, diaphragm, small intestine, and kidney after 8 months of diabetes were measured. RESULTS: Diabetic rats after Str injection showed hyperglycemia (> 1.7 g.L-1), hyperphagia, polyuria, polydipsia, and loss of body weight. Sorbitol levels in lens and sciatic nerve increased in normal and diabetic rats; the increase was higher in diabetic rats. No relationship was shown between glycemia and sorbitol levels. An increased sorbitol level after 8 months of diabetes was found in small intestine and kidney...
For more Absorption, Distribution and Excretion (Complete) data for D-Sorbitol (8 total), please visit the HSDB record page.
Metabolism / Metabolites
Sorbitol is widely used in a number of pharmaceutical products and occurs naturally in many edible fruits and berries. It is absorbed more slowly from the gastrointestinal tract than sucrose and is metabolized in the liver to fructose and glucose ... Sorbitol is better tolerated by diabetics than sucrose and is widely used in many sugar-free liquid vehicles ...
70% of orally ingested sorbitol is converted to carbon dioxide without appearing as glucose in the blood ...
Toxicity/Toxicokinetics
Interactions
PURPOSE: To examine the effect of common excipients such as sugars (sorbitol versus sucrose) on bioequivalence between pharmaceutical formulations, using ranitidine and metoprolol as model drugs. METHODS: Two single-dose, replicated, crossover studies were first conducted in healthy volunteers (N=20 each) to compare the effect of 5 Gm of sorbitol and sucrose on bioequivalence of 150 mg ranitidine or 50 mg metoprolol in aqueous solution, followed by a single-dose, nonreplicated, crossover study (N=24) to determine the threshold of sorbitol effect on bioequivalence of 150 mg ranitidine in solution. RESULTS: Ranitidine Cmax and AUC0-infinity were decreased by approximately 50% and 45%, respectively, in the presence of sorbitol versus sucrose. Similarly, sorbitol reduced metoprolol Cmax by 23% but had no significant effect on AUC0-infinity. An appreciable subject-by-formulation interaction was found for ranitidine Cmax and AUC0-infinity, as well as metoprolol Cmax. Sorbitol decreased the systemic exposure of ranitidine in a dose-dependent manner and affected bioequivalence at a level of 1.25 Gm or greater. CONCLUSIONS: As exemplified by sorbitol, some common excipients have unexpected effect on bioavailability/bioequivalence, depending on the pharmacokinetic characteristics of the drug, as well as the type and amount of the excipient present in the formulation. More research is warranted to examine other common excipients that may have unintended influence on bioavailability/bioequivalence.
Non-Human Toxicity Values
LD50 Rat sc 29,600 mg/kg
LD50 Rat iv 7100 mg/kg
LD50 Rat oral 15,900 mg/kg
LD50 Mouse oral 17,800 mg/kg
LD50 Mouse iv 9480 mg/kg
References

[1]. Use of sorbitol as pharmaceutical excipient in the present day formulations - issues and challenges for drug absorption and bioavailability. Drug Dev Ind Pharm. 2019 Sep;45(9):1421-1429.

Additional Infomation
Therapeutic Uses
Cathartics; Diuretics, Osmotic; Indicators and Reagents; Pharmaceutic Aids
A polyhydric alcohol with about half the sweetness of sucrose. Sorbitol occurs naturally and is also produced synthetically from glucose. It was formerly used as a diuretic and may still be used as a laxative and in irrigating solutions for some surgical procedures. It is also used in many manufacturing processes, as a pharmaceutical aid, and in several research applications.
The objective of this report is to describe a cost-effective strategy for management of constipation in nursing home residents with dementia. ... A prospective observational quality improvement study of 41 residents with chronic constipation and receiving an osmotic laxative /was conducted/. Sorbitol was substituted for lactulose. ... The number and amount of laxative use over a period of 4 weeks that were required to maintain regular bowel function was measured. . RESULTS: There was no difference in efficacy of lactulose and sorbitol. Use of additional laxatives was infrequent ... .
Osmotic diuretic given iv in 50% (wt/vol) solution to diminish edema, to lower cerebrospinal pressure, or to reduce intraocular pressure in glaucoma ... Dose: 50 to 100 mL of 50% solution; as laxative, oral, 30-50 g. /Former use/
For more Therapeutic Uses (Complete) data for D-Sorbitol (8 total), please visit the HSDB record page.
Drug Warnings
It is not to be injected. /Sorbitol solution USP/
The administration of a cathartic alone has no role in the management of the poisoned patient and is not recommended as a method of gut decontamination. Experimental data are conflicting regarding the use of cathartics in combination with activated charcoal. No clinical studies have been published to investigate the ability of a cathartic, with or without activated charcoal, to reduce the bioavailability of drugs or to improve the outcome of poisoned patients. Based on available data, the routine use of a cathartic in combination with activated charcoal is not endorsed. If a cathartic is used, it should be limited to a single dose in order to minimize adverse effects.
Side effects occur rarely following rectal administration of glycerin or sorbitol ... Rectal discomfort, irritation, burning or griping, cramping pain, and tenesmus /(straining)/. Hyperemia of rectal mucosa with minimal amounts of hemorrhage and mucus discharge ... occur less frequently following rectal administration of sorbitol.
Diarrhea frequently occurs with dosages of sorbitol used as adjuncts to sodium polystyrene sulfonate therapy.
For more Drug Warnings (Complete) data for D-Sorbitol (15 total), please visit the HSDB record page.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C6H14O6
Molecular Weight
182.17
Exact Mass
182.079
CAS #
50-70-4
Related CAS #
D-Sorbitol-d8;287962-59-8;D-Sorbitol-13C;287100-73-6;L-Sorbitol;6706-59-8;D-Sorbitol-d4;2714472-87-2;D-Sorbitol-18O-1;D-Sorbitol-13C6;121067-66-1;D-Sorbitol-13C-1;D-Sorbitol-13C-2;D-Sorbitol-d2;1931877-15-4;D-Sorbitol-d-2;1931877-16-5;D-Sorbitol-d2-1;2714432-33-2;D-Sorbitol-d2-2;1931877-14-3
PubChem CID
5780
Appearance
White to off-white solid powder
Density
1.6±0.1 g/cm3
Boiling Point
494.9±0.0 °C at 760 mmHg
Melting Point
98-100 °C (lit.)
Flash Point
>100°C
Vapour Pressure
<0.1 mm Hg ( 25 °C)
Index of Refraction
1.597
LogP
-4.67
Hydrogen Bond Donor Count
6
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
5
Heavy Atom Count
12
Complexity
105
Defined Atom Stereocenter Count
4
SMILES
C([C@H]([C@H]([C@@H]([C@H](CO)O)O)O)O)O
InChi Key
FBPFZTCFMRRESA-JGWLITMVSA-N
InChi Code
InChI=1S/C6H14O6/c7-1-3(9)5(11)6(12)4(10)2-8/h3-12H,1-2H2/t3-,4+,5-,6-/m1/s1
Chemical Name
(2R,3R,4R,5S)-hexane-1,2,3,4,5,6-hexol
Synonyms
Glucitol; D-Sorbitol
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~100 mg/mL (~548.94 mM)
DMSO : ~100 mg/mL (~548.94 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (13.72 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (13.72 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (13.72 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 110 mg/mL (603.83 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.4894 mL 27.4469 mL 54.8938 mL
5 mM 1.0979 mL 5.4894 mL 10.9788 mL
10 mM 0.5489 mL 2.7447 mL 5.4894 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us