SA4503 dihydrochloride

Alias: SA4503; SA 4503; SA-4503; AGY94806; AGY-94806; AGY 94806; Cutamesine HCl
Cat No.:V2813 Purity: ≥98%
SA4503 dihydrochloride (also known asAGY94806 dihydrochloride andCutamesine dihydrochloride), is a potent sigma-1 (σ1) receptor agonist with an IC50of 17.4 nM in guinea pig brain membranes.
SA4503 dihydrochloride Chemical Structure CAS No.: 165377-44-6
Product category: Sigma Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of SA4503 dihydrochloride:

  • Cutamesine (SA 4503; AGY 94806)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

SA4503 dihydrochloride (also known as AGY94806 dihydrochloride and Cutamesine dihydrochloride), is a potent sigma-1 (σ1) receptor agonist with an IC50 of 17.4 nM in guinea pig brain membranes. It is under development for recovery enhancement after acute ischemic stroke. SA4503 protects motor neuron NSC34 cells against superoxide dismutase 1 and serum free neurotoxicity. It upregulates the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) 1/2. SA-4503 protects against retinal cell death in vitro and in vivo by the agonistic effect of σ1 receptor. Therefore, σ1 receptor may serve as a potential therapeutic target in retinal diseases mediated by photoreceptor degeneration.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
The central nervous system is home to a number of disorders that may be related to the sigma receptor. In guinea pig brain membranes, cutamesine, a strong σ1receptor agonist, has a 103-fold greater affinity for σ1 (IC50=17.4 nM) sites than σ2 (IC50=1,784 nM). In guinea pig brain homogenates, cutamesine is 14-fold more selective for σ1 (Ki=4.6 nM) sites than σ2 (Ki=63.1 nM)[1]. Cutamesine shields motor neuron NSC34 cells from serum free neurotoxicity and superoxide dismutase 1. Extracellular signal-regulated kinase (ERK) 1/2 and Akt are both phosphorylated more highly by it[2]. Cutamesine downregulates the ionotropic glutamate receptor, GluR1, and lessens the activation of the MAPK/ERK pathway[3].
ln Vivo
In SOD1G93A mice, cutamesine prolongs their survival period[2].
Animal Protocol

SOD1G93A mice
References
[1]. Lever JR, et al. Sigma1 and sigma2 receptor binding affinity and selectivity of SA4503 and fluoroethyl SA4503. Synapse. 2006 May;59(6):350-8.
[2]. Tuerxun T, et al. SA4503, a sigma-1 receptor agonist, prevents cultured cortical neurons from oxidative stress-induced cell death via suppression of MAPK pathway activation and glutamate receptor expression. Neurosci Lett. 2010 Jan 29;469(3):303-8
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₂₃H₃₄CL₂N₂O₂
Molecular Weight
441.43
CAS #
165377-44-6
Related CAS #
Cutamesine;165377-43-5
SMILES
COC1=CC=C(C=C1OC)CCN2CCN(CCCC3=CC=CC=C3)CC2.[H]Cl.[H]Cl
Synonyms
SA4503; SA 4503; SA-4503; AGY94806; AGY-94806; AGY 94806; Cutamesine HCl
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:30 mg/mL
Water:< 1 mg/mL
Ethanol:< 1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 1 mg/mL (2.27 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 1 mg/mL (2.27 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 1 mg/mL (2.27 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 33.33 mg/mL (75.50 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2654 mL 11.3268 mL 22.6536 mL
5 mM 0.4531 mL 2.2654 mL 4.5307 mL
10 mM 0.2265 mL 1.1327 mL 2.2654 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
Contact Us Back to top