Ropivacaine HCl hydrate

Cat No.:V11111 Purity: ≥98%
Ropivacaine HCl hydrate is a novel and potent sodium channelblockerused as ananaesthetic agent, blocking neuropathic pain.
Ropivacaine HCl hydrate Chemical Structure CAS No.: 132112-35-7
Product category: Sodium Channel
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
500mg
1g
5g
Other Sizes

Other Forms of Ropivacaine HCl hydrate:

  • Ropivacaine
  • Ropivacaine hydrochloride
  • Ropivacaine-d7 hydrochloride (ropivacaine-d7 hydrochloride)
  • Ropivacaine mesylate
  • Ropivacaine-d7
  • (Rac)-Ropivacaine-d7 (ropivacaine d7)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Ropivacaine HCl hydrate is a novel and potent sodium channel blocker used as an anaesthetic agent, blocking neuropathic pain. It is also an inhibitor of K2P (two-pore domain potassium channel) TREK-1 with an IC50 of 402.7 μM in COS-7 cell's membrane.

Biological Activity I Assay Protocols (From Reference)
ln Vivo
Epidural injection of ropivacaine hydrochloride monohydrate efficiently suppresses neuropathic pain (mechanical allodynia and thermal hyperalgesia) without inducing analgesic tolerance and greatly delays nerve degeneration resulting from peripheral nerve injury. Development of sexual pain [1]. Ropivacaine hydrochloride monohydrate reduces the pressure-induced increase in filtration coefficient (Kf) without changing pulmonary artery pressure (Ppa), pulmonary capillary pressure (Ppc) and zonal characteristics (ZC) [2]. Evidence suggests that ropivacaine hydrochloride monohydrate maintains PaO2, lung wet-to-dry ratio, and plasma volume at values similar to those in sham-operated rats, hence reducing pressure-induced pulmonary edema and associated hyperosmotic risk [2] . Ropivacaine hydrochloride monohydrate reduces pressure-induced NO generation compared with hypertensive lung, as shown by lower lung nitrotyrosine levels [2].
Animal Protocol
Animal/Disease Models: Adult SD (SD (Sprague-Dawley)) rat (300–400g) [2]
Doses: 1 μM
Route of Administration: Infusion (added to perfusate reservoir)
Experimental Results: Attenuated pressure-dependent increase in filtration coefficient (Kf) .
References
[1]. Dene Simpson, et al. Ropivacaine: a review of its use in regional anaesthesia and acute pain management. Drugs. 2005;65(18):2675-717.
[2]. Li TF, et al. Epidural sustained release ropivacaine prolongs anti-allodynia and anti-hyperalgesia in developing and established neuropathic pain. PLoS One. 2015 Jan 24;10(1):e0117321.
[3]. Hye Won Shin, et al. The inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on K2P (two-pore domain potassium) channel TREK-1. J Anesth. 2014 Feb;28(1):81-6.
[4]. Milan Patel, et al. Ropivacaine Inhibits Pressure-Induced Lung Endothelial Hyperpermeability in Models of Acute Hypertension. Life Sci. 2019 Apr 1;222:22-28.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H27CLN2O
Molecular Weight
310.8621
CAS #
132112-35-7
Related CAS #
Ropivacaine;84057-95-4;Ropivacaine hydrochloride;98717-15-8;Ropivacaine-d7 hydrochloride;1217667-10-1;Ropivacaine mesylate;854056-07-8;Ropivacaine-d7;684647-62-9;(Rac)-Ropivacaine-d7;1392208-04-6
SMILES
Cl[H].O=C([C@]1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])N1C([H])([H])C([H])([H])C([H])([H])[H])N([H])C1C(C([H])([H])[H])=C([H])C([H])=C([H])C=1C([H])([H])[H]
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~304.06 mM)
H2O : ~50 mg/mL (~152.03 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.60 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (7.60 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (7.60 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.2169 mL 16.0844 mL 32.1688 mL
5 mM 0.6434 mL 3.2169 mL 6.4338 mL
10 mM 0.3217 mL 1.6084 mL 3.2169 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top