RK-287107

Alias: RK 287107; RK-287107; RK287107
Cat No.:V13825 Purity: ≥98%
RK-287107 is a potent TNKS/TNKS2 inhibitor (IC50 = 14.4 nM) with >7000-fold selectivity against the PARP1 enzyme, which inhibits WNT-responsive TCF reporter activity and proliferation of human colorectal cancer cell line COLO-320DM.
RK-287107 Chemical Structure CAS No.: 2171386-10-8
Product category: PARP
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

RK-287107 is a potent TNKS/TNKS2 inhibitor (IC50 = 14.4 nM) with >7000-fold selectivity against the PARP1 enzyme, which inhibits WNT-responsive TCF reporter activity and proliferation of human colorectal cancer cell line COLO-320DM. In a mouse xenograft model, RK-287107 also showed dose-dependent inhibition of tumor growth. Tankyrase inhibitors are a new class of anticancer agents, and RK-287107 is a promising lead compound for their development.

Biological Activity I Assay Protocols (From Reference)
Targets
Tankyrase-2 ( IC50 = 10.6 nM ); Tankyrase-1 ( IC50 = 14.3 nM )
ln Vitro
RK-287107 is a novel inhibitor that selectively inhibits tankyrases 1 and 2. In colorectal cancer cells harboring the shortly truncated APC mutations, RK-287107 causes Axin2 accumulation and downregulates β-catenin, T-cell factor/lymphoid enhancer factor reporter activity, and the target gene expression. The growth of APC-mutant (β-catenin-dependent) colorectal cancer COLO-320DM and SW403 cells is consistently inhibited by RK-287107, but not that of APC-wild (β-catenin-independent) colorectal cancer RKO cells. [1]
ln Vivo
RK-287107 administered intraperitoneally or orally inhibits the growth of COLO-320DM tumors in NOD-SCID mice. In vivo, RK-287107 inhibits the growth of tumors and the Wnt/β-catenin pathway in xenografted COLO-320DM cells. [1]
Cell Assay
RK-287107 is applied to cells in triplicate and left on for 120 hours. MTT assays are used to quantify relative cell number. Plotting of the average values occurs after at least two repetitions of the experiment.
Animal Protocol
6-week-old female NOD.CB17-Prkdcscid/J mice s.c. injected with COLO-320DM cells
100 mg/kg, 150 mg/kg, 300 mg/kg
IP, Oral gavage
References

[1]. Cancer Sci . 2018 Dec;109(12):4003-4014.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H26F2N4O2
Molecular Weight
416.4728
Exact Mass
416.2
Elemental Analysis
C, 63.45; H, 6.29; F, 9.12; N, 13.45; O, 7.68
CAS #
2171386-10-8
Related CAS #
2171386-10-8
Appearance
Solid powder
SMILES
C1CCC2=C(C1)C(=O)NC(=N2)N3CCC4(CC3)CN(C5=C4C(=CC(=C5)F)F)CCO
InChi Key
FZQYCOUBRJEYBC-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H26F2N4O2/c23-14-11-16(24)19-18(12-14)28(9-10-29)13-22(19)5-7-27(8-6-22)21-25-17-4-2-1-3-15(17)20(30)26-21/h11-12,29H,1-10,13H2,(H,25,26,30)
Chemical Name
2-[4,6-difluoro-1-(2-hydroxyethyl)spiro[2H-indole-3,4'-piperidine]-1'-yl]-5,6,7,8-tetrahydro-3H-quinazolin-4-one
Synonyms
RK 287107; RK-287107; RK287107
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 83~125 mg/mL (199.3~300.2 mM)
Ethanol: ˂1 mg/mL (NaN mM)
Water: ˂1 mg/mL (NaN mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.99 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (4.99 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (4.99 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4011 mL 12.0057 mL 24.0113 mL
5 mM 0.4802 mL 2.4011 mL 4.8023 mL
10 mM 0.2401 mL 1.2006 mL 2.4011 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Antiproliferative effect of RK‐287107 on colorectal cancer cells. Cancer Sci . 2018 Dec;109(12):4003-4014.
  • RK‐287107 downregulates β‐catenin signaling in cultured cells. Cancer Sci . 2018 Dec;109(12):4003-4014.
  • In vivo antitumor effect of RK‐287107 through repression of β‐catenin signaling. Cancer Sci . 2018 Dec;109(12):4003-4014.
  • Orally given RK‐287107 exerts an antitumor effect. Cancer Sci . 2018 Dec;109(12):4003-4014.
Contact Us Back to top